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ABSTRACT
This paper addresses the harmonic retrieval problem in colored
linear non-Gaussian noise of unknown covariance and unknown
distribution. The assumptions made in the reported studies, that
the non-Gaussian noise is asymmetrically distributed and no
quadratic phase coupling occurs ,are released. Using the elabo-
rately defined fourth-order cumulants of the complex noisy ob-
servations which are obtained through Hilbert transform ,we can
either estimate the noise correlation nonpapametrically via cu-
mulant projections or obtain the AR polynomial of the non-
Gaussian noise parametrically through ARMA modeling, then it
is shown that the prewhitening or prefiltering  techniques can be
employed to retrieve harmonics respectively. Simulation results
are presented to demonstrate the performance of the proposed
algorithms.

1.        INTRODUCTION

Colored non-Gaussian noise environments are frequently related
to sonar systems and signal detection, see[3].More recently,
harmonic retrieval in colored non-Gaussian noise with asymmet-
rical distribution was studied in [1][7].The key idea of these ap-
proaches is that the third-order cumulants of the non-Gaussian
noise can be estimated in the presence of harmonics, conse-
quently the correlation or the AR polynomial of the non-
Gaussian noise is recovered ,then these estimated noise charac-
teristics are used to whiten or partially whiten(make MA)the
noise. Finally many conventional method can be applied to re-
trieve the harmonics.

It is well known that the third-order cumulants of quadratic
phase coupled harmonics are nonzero[6]while the third-order
cumulants of symmetrically distributed noise are zero. Although
the fourth-order cumulants of symmetrically distributed noise
are nonzero, those of the harmonics also do not vanish.As a re-
sult, noise characteristics can no longer be estimated in the pres-
ence of harmonics. The purpose of  this paper is to resolve this
problem. In section 3 we show that the complex counterpart of
the real noisy observations can be obtained through Hilbert
transform. Some particularly cumulant definitions were proved
suitable for estimating noise characteristics. In section 4 two
methods ,namely the prewhitening method and prefiltering
method ,are proposed to retrieve harmonics. Simulation results
are given to illustrate the performance of the new approaches in
section 5.
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2.HARMONICS IN NON-GAUSSIAN
NOISE: SIGNAL MODEL

We employ the discrete-time signal-plus-noise model given by

y n s n w n( ) ( ) ( )= +                                                               (1)
wheres n( ) is a real-valued harmonic signal given by
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in (2) a si ' and ωi s' are constants while ϕi s' are uniformly dis-

tributed over [0,2π ) . The problem of interest in this paper is to

estimate p  and ωi s' using just the noisy observations

y n( ) , n N= 1, , .�

ASSUMPTION A1   The noise is given by
w n h e nw( ) ( ) ( )= −∑ τ ττ ,where h nw( ) is a stable linear system

with absolutely summable impulse response, e n( ) is a non-
Gaussian independent, identically distributed driving sequence.
There are occasions to restrict noise model further to ARMA
process.
ASSUMPTION A2 The noise w n( ) is modeled as an

ARMA( n nb d, ) process given by                                                      
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and

q e n e n jj− = −( ) ( ) .The ARMA process is assumed exponen-
tially stable and free of pole-zero cancellations, is causal but
may be nonminimum phase .
REMARK  Contrasting with the reported studies, there is no as-
sumption that no quadratic phase coupling occurs, and the addi-
tive non-Gaussian noisew n( )  may be either asymmetrically or
symmetrically distributed.

    3.ESTIMATION OF THE NON-
GAUSSIAN NOISE CHARACTERISTICS

When the harmonics are quadratic phase coupled and/or the
noise is symmetrically distributed, the noise characteristics can’t
be determined from both the third-order and fourth-order cumu-
lants of the real noisy signal . Hence we transform the real ob-
servations into their complex counterpart. It is well known that
for complex process there are many different cumulant definitions
depending on the position of conjugations. Among them some
particular  definition, which is zero for coupled or uncoupled



harmonics while is nonzero for symmetrically or asymmetrically
distributed non-Gaussian noise, may be chosen to estimate the
noise characteristics.

Given a real processx t( ) , its complex counterpart is
~( ) ( ) ( )x t x t jx t= +                                                           (4)

where x t( ) is the Hilbert transform of x t( ) . ~( )x t can be seen as
the output of  a linear model  with the input x t( ) , the impulse

response of this linear model is

h t t
j t1

1
( ) ( )= −δ

π
                                                                   (5)

Obtain the complex counterpart of  the real noisy signal y n( ) in
(1) using Hilbert transform
~( ) ( ) ( )y n y n jy n= + = +~( ) ~( )s n w n                                         (6)

where ~( )s n is the complex-valued harmonic signal

~( ) exp( ( ))s n a j ni i i
i

p

= +
=
∑ ω ϕ

1

                                                  (7)

~( )w n is the complex non-Gaussian noise. ~( )y n can be depicted
by the block diagram of Fig 1 .
       e n( )               w n( )           y n( )                  ~( )y n

                                             +
                                      s n( )

Fig 1.    The block diagram which depicts the complex
observations ~( )y n .

Now we show the method of  estimating the noise covariance
under assumption A1 and the method of determining the noise
AR parameters under assumption A2.

3.1 Estimating The Noise Covariance Using Cu-
mulant Projections

Definition 1: The fourth-order cumulant of  a complex process
~( )x n is defined as

c cum x n x n x n x nx4 1 2 3 1 2 3~( , , ) (~( ),~ ( ),~( ),~( ))τ τ τ τ τ τ= + + +∗     (8)

It is easy to prove that according to definition 1,the fourth-order
cumulant of  quadratic phase coupled or uncoupled harmonics is
zero, Thus

c y4 1 2 3~( , , )τ τ τ = c w4 1 2 3~ ( , , )τ τ τ                                                  (9)

Under assumption A1, a simple relationship exists between the
higher and lower order cumulants ofw n( ) ,which is termed the
projection property of cumulants [1],next we’ll derive the com-
plex counterpart of this relationship.

THEOREM 1: The cumulants of the complex non-Gaussian
noise ~( )w n in  (6) according to definition 1 satisfy the following
cumulants projection property

c cw w2 1 24 4 1 2 3
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Wherec w2 ~ =  E w n w n( ~( ) ~ ( ))∗ + τ1  is the covariance of~( )w n ,

c w4 ~  according to definition 1 ,α24 is a constant.

Proof : From Fig 1,the serial connection ofHw( )ω  andH1( )ω
can be regarded as a linear system with transfer function
H H Hw( ) ( ) ( )ω ω ω= 1 ,its impulse response is

h n h n h nw( ) ( ) ( )= ∗ 1                                                                (11)

then ~( ) ( ) ( )w n e i h n i
i

= −∑                                                    (12)

from (5) and assumption A1,h n( ) is absolutely summable. It can

be obtained that c w4 ~ according to definition 1 is
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It should also be noticed that the fourth-order cumulants ac-
cording to some other definitions may not satisfy (10) such as

c cum x n x n x n x nx4 1 2 3 1 2 3~( , , ) (~( ),~( ),~( ),~( ))τ τ τ τ τ τ= + + +     (13)

From Theorem 1and (9) the noise covariance can be estimated in
the presence of harmonics.

3.2  Determining The Noise AR Parameters

Under assumption A2,we’ll show that the AR order nb  and AR

coefficients bi , i nb= 1, ,� can be determined in the presence of

the quadratic phase coupled or uncoupled harmonics with no re-
striction on the non-Gaussian noise distribution.

Definition 2: The fourth-order cumulant of  a complex process
~( )x n , c x4 1 2 3~( , , )τ τ τ is defined as

c cum x n x nx4 1~ (~( ),Re(~( )),= + τ ~( ),~( ))x n x n+ +τ τ2 3            (14)

where Re(~( ))x n+ τ1 = x n( )+ τ1  is the real part of ~( )x n+ τ1 . It

is obvious that according to definition 2

c cum x n x n x n x nx4 1 2 3 1 2 3
1
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Then we can easily obtain the result that according to definition
2 c s4~ is zero no matter whether the harmonics are quadratic

phase coupled, whereas c w4 ~ is nonzero as long as w n( )  is non-

Gaussian.

Theorem 2 : The fourth-order cumulants of the complex non-
Gaussian noise ~( )w n in  (6) according to definition 2 satisfy the
following higher order Yule-Walker equation
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Proof : The impulse response of the ARMA model in assump-
tion A2 is h nw ( ) ,then

  Re(~( )) ( ) ( ) ( )w n w n h e nw= = −∑ τ ττ                                (17)

According to definition 2 and from(12)(17),we have
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or i < 0 .Consequently whenτ1 > nd ,the left-hand side of (16) is

identical  with zero.                                                                 

      From theorem 2, the AR order and AR parameters can be
determined by Giannakis and Mendel[4].It is well known that

the fourth-order cumulant of a complex process has 24  different
definitions depending on the position of conjugations. The result
can be obtained that none of these cumulant definitions alone
satisfies the Yule-Walker equation in (16),thus they all can’t be
used to estimate the noise AR order and parameters.

4. HARMONIC RETRIEVAL

     we propose two approaches for harmonic retrieval. One is the
prewhitening method using noise covariance, the other is the
prefiltering method using noise AR parameters.

4.1  Prewhitening Method

The covariance matrix of ~( )y n in (6) is given by,

R y~ = E(~ ~ )y(n)y(n)H = APAH + σ ~w
2 ∑ ~w                              (19)

σ ~w
2 is the noise variance, ∑ ~w is the normalized noise correlation

matrix. If ∑ ~w =I  then the noise is white and the problem reduces

to conventional eigenanalysis. In the colored noise case, we may
apply the result of [2] directly

 R y~ ei = λi ∑ ~w ei                                                                (20)

which is a generalized eigenvalue problem which may be solved
using SVD. The resulting eigenvector estimates can then be used
in the various noise subspace methods for harmonic retrieval.
The difference between the new prewhitening method and that
proposed in [1]lies in the estimation technique of the noise cor-
relation matrix∑ ~w . Our new prewhitening method is summa-

rized in the following steps.

1) Obtain ~( )y n  from y n( )  using Hilbert transform as in (6).

2) Estimate the covariance matrix R ~y in (19).

3) Estimate c y4~ according to definition 1.

4) Estimate∑ ~w using cumulant projections via theorem 2 .

5)  Solve (20) using the estimates from steps 2 and 4.
6)  Use the resulting noise subspace eigenvectors in the conven-
tional noise subspace method to retrieve the harmonics.

 4.2   Prefiltering Method

Having determined the noise AR parametersb i( ) i nb= 1, ,� ,

denote 
�

y n B q y n b i y n i
i
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y n( ) as

the filtered output process. From [7],the correlation of
�

y n( ) satisfies the following modified Yule-walker (MYW)
equation
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and the polynomialA z a m zm
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roots at z e i pjwi= =± ( , , , )1 2� . The order 2p and parameters
a i i p( ), , ,= 1 2� can be estimated by using SVD-TLS method[5]

The following is our new prefiltering approach

1) Obtain ~( )y n  from y n( )  using Hilbert transform .

2) Estimate c y4~  according to definition 2,then determine nb and

b i i nb( ), , ,= 1�  from (16) via SVD-TLS method.

3) Use the estimated AR polynomial  to obtain 
�

y n( ) .

4) Compute the correlation of 
�

y n( ) ,then determine the coeffi-
cients a i i p( ), , ,= 1 2� from (21).

5) Find roots of A z( ) = 0  then compute the frequencies .

5. SIMULATION RESULTS

Simulation results are focused on demonstrating the effective-
ness of  the proposed methods, there is no comparison between
them. In example 1, 2,the prewhitening method is employed
while in example 3,4 the prefiltering method is used. Consider a
time series of the form

y n f n f n w n( ) sin( ) sin( ) ( )= + + + +2 21 1 2 2π ϕ π ϕ               (22)

The noisew n( ) in example1 and 2 is an AR(2) noise with AR
parameters [1,0,0.9025] whose spectrum shows a sharp peak.

Example 1: f1 018= . , f2 0 36= . ,ϕ π ϕ π1 26 3= =/ , / ,the har-

monics are  quadratic phase coupled. SNR=-2dB, w n( ) is expo-
nential (asymmetrically) distributed, the data length is 512.The
method proposed in [1]estimate the noise correlation via third-
order cumulant projections, its result is shown in Fig 2.a, while
the result of the new method is shown in Fig 2.b.
Example 2:f f1 20 2 0 35= =. , . ,SNR=-2dB,the data length is

512 ,w n( ) is mixed Gaussian(symmetrically) distributed. The re-
sults of the method in [1] and the new prewhitening method are
shown in Fig 3.a and Fig 3.b respectively.

The method proposed in [1] can also estimate the noise correla-
tion via fourth-order cumulant projections, but the result is bi-
ased. When the SNR is  not appropriate or the kurtosis of the
driving sequence of w n( ) is comparatively small, the bias will



be large.  In the next two examples ,the performance of the new
prefiltering method is shown. The noisew n( ) is  an ARMA
process with AR parameters [1 -1.5 0.8] and MA parameters [1 -
0.75 -2.5].

Example 3:f1 0 23= . , f f2 12= ,ϕ π ϕ π1 26 3= =/ , / , quadratic

phase couple occurs ,w n( )  is exponential distributed,SNR=-
3dB,parameter estimation results of the new prefiltering method
are summarize in Table I .

Example 4: f f1 20 26 0 3= =. , . ,w n( )  is mixed Gaussian distrib-

uted,SNR=-5dB,the results are given in Table II.

In last two examples ,the noise AR parameter estimates are
heavily biased if using the prefiltering method proposed
in[7],which results the frequency estimates are often unobtain-
able because there is no solution of A z( ) = 0 .While the new
prefiltering method can obtain satisfied results.

6.CONCLUSION

In this paper, two methods are proposed to retrieve harmonics in
colored linear non-Gaussian noise especially when the noise is
symmetrically distributed or the harmonics are quadratic phase
coupled. In order to estimate the non-Gaussian noise character-
istics in the presence of harmonics, Hilbert transform is used to
transform the real observations into their complex form. Then
the cumulants projection property and higher order Yule-Walker
equation of this complex process are established, which are used
in the proposed prewhitening and prefiltering method respec-
tively. Simulation results have shown the effectiveness of the
new methods.
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Fig 2.a  is the result of the method  in [1] in the case of
quadratic phase coupled harmonics, while Fig 2.b is the
result of the new prewhitening method.
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Fig 3.a  is the result of the method  in [1] in the case of
symmetrically-distributed non-Gaussian noise, while Fig
3.b is the result of the new prewhitening method.

    Table I
 Noise Model         b(1)           b(2)
 True        -1.5            0.8
 Estimate  -1.5617(0.1457)     0.8722(0.0693)
 Frequency         f 1            f 2

 True        0.23            0.46
 Estimate    0.2306(0.0008)    0.4603(0.0009)

   Table II
 Noise Model         b(1)           b(2)
 True        -1.5            0.8
 Estimate  -1.4773(0.1316)    0.8338(0.0929)
 Frequency         f 1            f 2

 True        0.26            0.3
 Estimate   0.2601(0.0005)   0.3002(0.0006)

Statistics of AR parameter and frequency estimates ob-
tained via the new prefiltering approach(N=2048 in each
run, 20 Monte-Carlo Runs).Table I is for example 3 and
Table II is for example 4.


