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ABSTRACT

A blind algorithm with implicit signal selectivity capability
is proposed. The algorithm is an evolution of the original
multiuser constant modulus algorithm of [1]. The new
algorithm features a least-squares type updating rule for
fast convergence rate and an adaptive control of the weight
of the decorrelation term which improves the steady-state
error variance. The expected improvements of the
proposed algorithm are verified through simulations with
smart antennas in a spatial-division multiple access system.

1. INTRODUCTION

The problem of multiuser signal separation has received
attention due to its relevance for spatial and code division
multiple access techniques (S/CDMA). In this context, it
has been proposed recently in [1] a constant modulus
algorithm with multiuser signal separation capability (MU-
CMA). This capability was achieved by introducing in the
optimization criterion  a term which penalizes cross-
correlations between multiuser output signals. Proposed
MU-CMA has a LMS-like updating rule and therefore
features a slow convergence rate which may preclude its
use in fast time-varying environments. Furthermore, we
point out in this paper that the extra decorrelation term
increases the steady-state error variance, which degrades
the corresponding bit error rate performance. Based on the
above observations, a new algorithm is proposed which
differs from the MU-CMA in the following aspects:

• a least-squares type updating rule is employed in order
to increase the convergence rate and,

• an adaptive control of the decorrelation term weight is
used in order to reduce steady-state error variance after
multiuser signals are sufficiently separated.

The improvements obtained with the proposed algorithm
are demonstrated through simulations with smart antennas
in a SDMA application.

The rest of this paper is organized as follows. In section 2
we explain the application of interest in this paper. Section
3 reviews the original MU-CMA algorithm and analyzes
its performance through simple simulations. Section 4
presents the proposed algorithm. Section 5 presents

simulation results that validate the superior performance of
the proposed algorithm.  Finally, section 6 summarizes the
present paper.

2. APPLICATION OF INTEREST

The application of interest is an AWGN symbol-
synchronous SDMA system with possible power
imbalances among users. An M-element uniform linear
antenna array is placed in the receiver. A digital
beamformer is provided for each active user. The output
signal of the i-th user's beamformer is given by:

yi[n]=wi
Tx         (1)

where: wi=[wi1 wi2 ... wiM] T is  i-th beamformer weight
vector, x=[ x1 ... xM ]T  is beamfomer input vector and we
have omitted the time index [n] in the right hand side of
eq.(1) for convenience. Performance among different
algorithms will be accessed through the constant modulus
error(CME):  CME(n)=(|yi(n)|-1)2 .

3.   CONVENTIONAL MULTIUSER CMA

It is well known that the original CMA [2,3] does not have
the signal selectivity capability. Therefore, when operating
in multiuser signal environments, such as S/CDMA-based
systems, additional procedures must be implemented in
order to avoid user ambiguity. One possibility which is
attractive because of its simplicity is the MU-CMA
proposed in [1]. In this case a term which penalizes cross-
correlations among multiuser output signals is added to the
conventional constant modulus cost function. The cost
function that must be minimized corresponding to the i-th
user  is given by:
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where: K is the number of users, yi[n] is i-th user's
beamformer output, γ  is the decorrelation term weight and
rlj  = E{ yl[n]yj

*[n]} is the cross-correlation between l-th and
j-th users. As we will point out in this section, the
decorrelation weight γ will be important in meeting a
compromise between the steady-state error variance (which



increases with increasing γ) and the probability of user loss
(which decreases with increasing γ). A user is lost when it
is not included in the set of recovered users which means
that another user has been recovered more than one time. A
LMS-like algorithm can be obtained by the conventional
stochastic gradient procedure. The gradient of the cost
function φi with respect to wi  is given by:
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where we have omitted some multiplicative constants that
arise from the derivation. In order to implement this
algorithm, the quantities rli and E{ yl[n]xi

*[n]} must be
estimated through temporal averages. This is implemented
using a single pole filter as follows:

Ryy(n+1)=λRyy(n) + (1-λ)y[n]yH[n] (4)

P(n+1)=λP(n) + (1-λ)x*[n]yT[n] (5)

where yT[n]= [y1[n] .... yK[n]], superscripts T and H denotes
ordinary and Hermitian tranpositions, and λ<1 is a
smoothing factor. The estimates of the ensemble averages
in (3) can be taken using eqs. (4) and (5). Thus, the MU-
CMA is given by:
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where ( )�r nli  is the (l,i) element of Ryy(n) and pl(n) is the l-

th column of matrix P(n). Two major disadvantages of the
algorithm in (6) are its slow convergence rate and an
increase in the steady-state error variance as a result of the
additional decorrelation term. The latter occurs because the
cross-correlations do not actually vanish due to
imperfections on the estimation procedure. As a possible
illustration of these disadvantages consider the following
simulation. Table I shows the SDMA system setup. In the
present case only the perfect power control scenario is
considered. The additive noise power was set to zero. Fig.
1 shows the mean CME of the MU-CMA for 100
independent transmissions of 5000 QPSK symbols. Each
curve is for a particular value of the decorrelation weight
as indicated in the figure. Also indicated in the figure it is
the percentage of lost users for each curve. Clearly, the
steady-state error variance increases with increasing γ
while the percentage of lost users decreases accordingly,
and vice-versa. The penalty in steady-state error variance
due to a successful decorrelation (γ=10-3) can be
significant as shown in fig.1. In practice, there will be a

minimum value of γ for which no user is lost. However,
this choice of γ will depend on the number of active users
in the system. Furthermore, as seen in fig. 1, the algorithm
takes up to 2000-3000 iterations to reach the minimum
CME floor. These disadvantages led us to propose a new
algorithm for fast and efficient blind multiuser signal
separation.

Table I: SDMA System Configuration
(Uniform Linear Array of M=8 antennas)

User # DOA (degrees) Power Control Scenario
Relative Power (dB)
Perfect Near-Far

1 1 0 - 6
2 -52 0 - 3
3 29 0 +3
4 76 0 +6

4. LEAST-SQUARES WITH ADAPTIVE
DECORRELATION MULTIUSER CMA

As discussed in last section, the slow convergence rate and
the uncertainty about the choice of the decorrelating weight
in the original MU-CMA, may preclude its use in practice.
As a solution for the slow convergence rate, let us now
propose a different constant modulus criterion for
multiuser signal separation. Suppose that at the N-th time
instant there are (N+1) data vectors x(0) ... x(N) as well as
(N+1) array output signals per user yi(0) ... yi(N).
Moreover, assume the availability of the cross-correlations
statistics rlj , 1≤l,j≤K, l≠j. Then, for the i-th user, we
minimize a cost function given by:
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where:              
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Our aim is to choose the array weight vector wi that
minimizes φi(N). The gradient of φi(N) with respect to wi is
given by:
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where, again, we have omitted some multiplicative
constants. By setting eq.(8) to zero we have:
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We can rewrite eq.(9) as:

Ri(N)wi(N)=di(N)               (10)

where:
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Finally:

wi(N) = Ri
-1(N)di(N)    (11)

Note that this optimization procedure resembles the ones
used to obtain the conventional recursive least-squares
algorithm [4] and recursive CMA [5]. For real time
implementation the required quantities in eq.(11) can be
estimated using, again, a single pole filter. Hence, the
algorithm can be summarized as follows:

wi(n) = Ri
-1(n)di(n)             (12.a)

Ri(n+1)=λRi(n)+(1-λ)|yi(n)|2x*(n)xT(n) (12.b)

di(n+1)=λdi(n)+(1-λ)yi(n)x*(n) − ( ) ( )γ �r n nli
l
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where λ<1 is a smoothing factor, ( )�r nli  and ( )pl n  are

temporal estimates of the corresponding ensemble
averages taken respectively from Ryy(n) and P(n) in eqs.
(4-5), as explained before. The algorithm in eq.(12) will
improve the convergence rate of MU-CMA but not its
steady-state error variance. A further step into improving
the performance of original MU-CMA is to control
somehow the decorrelation weight γ. In fact, the necessity
of the decorrelation term is less prominent when the weight
vectors of the several users have provided the desired
separation. Hence, the decorrelation weight could be made
a function of the level of cross-correlation among users.

For this sake we need to define a measure of the level of
cross-correlation per user:
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This measure is an average over the number K of users in
the system and therefore independent of it. Now a simple
transformation on eq.(13) will enable us to control the
decorrelation weight in a per-user basis. The value of γ on
eq. (12.c) must be substituted by:

( ) ( )[ ]γ i in r n= tanh            (14)

where tanh(•) is the hyperbolic tangent function. This
function is an ad-hoc though suitable choice for the control
of the decorrelation weight. The complete algorithm
comprised of eqs.(12-14) will be called least-squares with
adaptive decorrelation - multiuser CMA (LSAD-CMA).

5. SIMULATION RESULTS

In this section we present some comparative simulations
with the proposed algorithm and the existing MU-CMA.
The system configuration is given again by the parameters
in Table I. Fig. 2 shows the CME performance averaged
over all users and 200 independent transmissions of 400
QPSK data symbols. Signal-to-noise ratio was set to 20
dB. A total of 12 dB relative power imbalance is
considered among users in the near-far scenario, as shown
in table I. The CME performance of the continuously
trained recursive least squares (RLS) [4] algorithm is
included as a bound on performance. The smoothing factor
for all temporal averages was set to λ=0.96. For every
transmission, a verification of lost users was performed
based on the measured bit error rate. Performance of
LSAD-CMA reaches the error floor in as few as 400
symbols with no lost user throughout all independent
transmissions in both power control scenarios. The
performance of the original MU-CMA is poor as expected.
Fig. 3 shows the temporal behavior of the decorrelation
weight averaged over all users and repetitions for the near-
far scenario. Fig. 4 shows an example of the set of antenna
patterns provided by LSAD-CMA for all users after the
last weight update and for the near-far scenario. Note the
implicit power control performed by the antenna array:
gains directed towards each user are inversely proportional
to its received power level. The patterns provided by MU-
CMA were meaningless after 400 hundred iterations.

6. CONCLUSIONS

We have verified some drawbacks of the original multiuser
constant modulus algorithm of [1] and proposed an



alternative technique which improves the convergence rate
and the steady-state error variance. A least-squares version
of the multiuser CMA was derived to enhance the
convergence rate and an adaptive control of the
decorrelation weight was introduced to improve the steady-
state error variance. Simulation results confirm the
expected improvements. The proposed technique, which
has been named least-squares with adaptive decorrelation -
multiuser CMA, is then an interesting approach for the task
of blind multiuser signal separation.
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Fig. 1 - CME performance of MU-CMA for different
values of the decorrelation weight
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Fig. 2 - CME Comparative Performances of several
algorithms for perfect (−) and near-far (- -) power control
scenarios
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Fig.3 - Averaged temporal evolution of the adaptive
decorrelation weight (near-far scenario)

Fig. 4 - Antenna patterns for LSAD-CMA and near-far
scenario after last weight update.


