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ABSTRACT

In this paper, we present a novel class of
forward error correcting codes constructed
using the discrete Walsh transform. They
are a class of double-error correcting codes
defined on the field of real numbers. An
iterative decoding algorithm for Walsh
transform codes is developed and
implemented. The error correcting
performance of Walsh transform codes over
an AWGN channel is evaluated. Selected
Walsh transform code parameters are
compared to those of the well-known BCH
and RS codes.

1. INTRODUCTION

FFT has been used for error detection and
correction of real or complex numbers [1-3].
Efficient techniques for decoding FFT codes
can be devised under erasure channels [4].
However, error detection and correction of
real numbers are very sensitive to noise [5];
there are methods to get around this
sensitivity issue [6-7]. The purpose of this
paper is to present a class of forward error
correcting codes using Discrete Walsh
Transform (DWT) on the fields of real
numbers. The advantage of DWT is that its
elements are either 1 or –1; hence its
transform and inverse transform are the
same, and can be implemented very
efficiently. Below we shall discuss a single
and a double error correcting codes using
DWT.

2. ENCODING OF DWT

In order to get a block code of size n, k
information samples are chosen such that

k =  n-log2(n)-1, (1)

where n is a power of 2. To encode these k
information samples, n-k zeros are inserted
in the code of length n in the following
positions:

i = 2m –1 for m = 0,1,…, log2(n) (2)

The remaining symbols of the bock of size n
consist of the k information samples. The
DWT of this block of size n is the
transmitted code. For example, for n=8, the
0th , 1st, 3rd , and 7th positions are set to zero
and in the remaining positions, 4
information samples are inserted. The DWT
of size 8 of this block is the (8,4) Walsh
code. The position of zeros (2) is chosen for
the possibility of detection and correction of
single and almost all double errors.

3. DECODING THE WALSH
CODES

Like any error correcting codes, the
decoding consists of syndrome calculation,
detecting the number and position of errors,
and finding the magnitude of the errors. We
shall discus each one in the following:

Syndrome calculation- If the channel noise
is additive, the Walsh transform1 of the
received code will yield the syndrome at the
position of zeros (2). Thus the syndrome
vector has a length of n-k = log2(n)+1. If the
syndrome vector is all zero, then there is no

                                                          
1 Since the Inverse Walsh is equivalent to the
Walsh transform divided by n.



error. In case of a single error, the absolute
value of all the elements of the syndrome
vector are equal to the absolute value of the
error magnitude. If the elements of the
syndrome vector do not show any pattern as
mentioned above, there are two or more
errors. The analysis for error detection and
correction is as follows:

Let Xn be the transmitted code vector of
block size n and Yn be the received code
vector. Since noise is assumed to be
additive, we have

Yn = Xn + En , (3)
where En is the error signal. The syndrome
is defined by the set of n-k equations:
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i = 2m –1 for m = 0,1,…, log2(n) (4)

i is the position of zero as given in (2). If
there are no errors, si = 0, if there is only
one error at position p, then the syndrome
becomes:

(5)
For all values of i defined in (2).
The above equation implies that, depending
on i and p, the syndrome is equal to pE± ;

s0 is always equal to Ep- the magnitude of
the error at position p.  A surprisingly
simple algorithm can be used to determine
the position p. If we normalise the syndrome
vector by s0, and then convert 1’s into 0’s
and –1’s into 1’s, a binary representation of
the syndrome yields the position p. For
example, if n = 8, the normalised syndrome
matrix for a single error at positions p = 0,
1, …, 7 is in the following form:

10101010

11001100

11110000

00000000

00000000

=S (6)

where the first column of S represents the
normalised and converted syndrome vector
when p = 0, and the second column
represents the syndrome vector when p=1,
etc. As it can be seen in (6), the binary
representation of each column determines
the position p. Once p is known, the single
error s0 = Ep is subtracted from the received
code vector Yn at position p to get the actual
transmitted code vector Xn.
If there are two errors, the syndrome will be
unique for any pattern of loss provided that
the absolute values of the two errors are not

the same, i.e., qp EE ≠ . The syndrome of

a DWT code (4,1) is given in Table 1.

This table shows that if the magnitudes of
the errors are not equal, the syndrome
uniquely represents any pattern of two
losses. In general, a systematic algorithm
can be used to detect the position of the two
errors, p and q; the algorithm is given
below:
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Algorithm

Initialise error positions p and q.
/*Loop 1*/

For m=1 to log(n)-1
    Calculate i=2m-1,
    If s0= si, then no operation,
    Else if s0= -si, then add (n/2m) to p and q,
    Else add (n/2m) to q and exit Loop_1
End
Calculate c=2m-1
If m=log(n), add 1 to q,
Else
/*Loop 2*/
For m=(m+1) to log(n)
   Calculate i=2m-1,
   If s0= si and sc ≠  si, t then no operation

   Else if iss ≠0  and cs = is , add (n/2m) to q,

   Else if iss ≠0  and cs = - is , add (n/2m) to p,

   Else if iss −=0  and cs ≠ is , add (n/2m) to p

and q,
   Else declare error positions not found, and exit
End
Return error positions p and q.

4. ERASURE CHANNELS

For erasure channels, the positions of errors
are known and there are no ambiguities in
case the absolute values of double errors are
equal. Therefore, DWT codes can always
correct for two erased (lost) samples. Many
triple and more erasures may also be
corrected depending on n and k of the (n,k)
DWT code.

5. PERFORMANCE EVALUATION

The performance of DWT codes is
evaluated over AWGN channel using 32ary
MFSK modulation with non-coherent
detection and hard-decision decoding. The
bit error rates with respect to Signal-to-
Noise ratio ( 0/ NEb ) of different DWT

codes are shown in Figure 1. The code rates
of DWT codes compared to those of double
error correcting BCH codes are better as can
be seen in Table 2.



6. CONCLUSION

A novel class of forward error correcting
codes has been constructed using DWT.
These codes can detect and correct all
patterns of single errors and almost all
patterns of double errors, and definitely all
patterns of double erasures. The block size
of the DWT codes is n = 2m for any integer

2≥m , the number of information symbols
is k = n-m-1, and the code rate is

m

m
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+− . The fast DWT is more

efficient than FFT since the operations are
all real with additions and subtractions only.
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