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ABSTRACT
A new method for extracting the boundary of the region of
interest (ROI) from motion affected magnetic resonance images
(MRI) is presented. An image pre-processing stage is included to
suppress prominent ghost artifacts and excessive blurring in the
background, in order to facilitate the contour extraction
algorithm. The pre-processing stage consists of a novel fuzzy
model, incorporating a technique of hierarchical view by view
image reconstruction. The contour extraction is performed using
an intelligent, attractable active contour model (snakes), which
is capable of driving any initial guess in the area of the evolving
estimate towards the desired contour, and fitting in to the object
without any overrun. The proposed method has been applied to
spin echo MRI images affected by rotational motion, producing
good results.

1. INTRODUCTION

The popularity of MRI over other imaging disciplines depends
predominantly on its high spatial resolution and soft tissue
contrast. In order to obtain such high quality, diagnostically
interpretable images, relatively long image acquisition times are
required, which makes it vulnerable to artifacts caused by
physiological motion or voluntary patient motion. In two-
dimensional (2D) Fourier imaging, such artifacts appear as
blurring or ghost repetitions of the moving structures along the
phase encoded direction [1]. Post-processing methods have been
proved to be effective in suppressing such motion artifacts during
the image reconstruction stage. These methods either use
navigator echo information on the nature of the motion [2] or
estimate motion parameters directly using the acquired data [3]-
[6]. Projection onto convex sets (POCS) [7] is often used in
motion estimation and correction [3][8]. The success of POCS
largely depends on the convex sets, defined by the constraints
imposed via available priori  knowledge. Finite support constraint
[7] is one of the most popular convex sets employed in past
literature. However, no convincing methods have been proposed
as to how the finite support, marked by the outer boundary of the
region of interest (ROI), is extracted from the motion affected
image. Minimization of pixel energy outside the ROI has also
been widely used in acquiring useful motion information [3]-[6].
Therefore, it is imperative to extract the ROI boundary with high
accuracy, for the success of post-processing methods.

There are two methods of ROI boundary extraction, proposed in
the past literature. Zoroofi et. al. [7] propose that simple
thresholding would produce an estimate for the ROI. This
method seems impractical due to two reasons. Firstly, the
resulting ROI entirely depends on the thresholding value, which
is chosen arbitrarily. Secondly, in the presence of strong ghost
artifacts outside ROI, thresholding will not be capable of
eliminating these high intensity ghosts without seriously
compromising the edges of the original object. The result will be
an erroneous estimate for the boundary of ROI. Hedley et. al. [2]
propose a method of manually fitting a boundary by an expert.
This technique may be successful in some cases where the
corrupted image warrant edge estimation by a trained eye, in
spite of the presence of artifacts. However, such a method is
shown to produce unacceptable results in the midst of severe
rotational motion, where the spurious ghost edges conceal the
real boundary of the object. Manual curve fitting also demands a
considerable time and concentration on the part of the expert,
rendering this method to be inefficient.

This research is motivated by the need for a robust, efficient,
reliable and automatic algorithm for the purpose of ROI contour
extraction from the motion affected MRI images. Since the
nature of the motion artifacts differ according to the motion
itself, conventional techniques such as dedicated filters (e.g.
Gaussian) are ineffective in suppressing artifacts in the image
background. Therefore, in this paper, we present a novel pre-
processing stage consisting of a fuzzy model incorporating a
technique of hierarchical view by view image reconstruction, in
order to suppress strong ghosts and blurring in the background of
the image, and to refine the edges of the object. Then, a robust
attractable active contour (snakes) model is employed to extract
the ROI boundary. The new snakes model features enhanced
capabilities compared to the conventional model, such as, driving
any initial guess towards a desired contour, working against a
constant image background, overcoming spurious edge points
and flowing into the object without overrun. Using additional
control parameters, it is also possible to control the convergent
properties of the active contour, which provide a high degree of
flexibility and adaptability.

2. PRE-PROCESSING

In order to formulate the pre-processing algorithm, we observe
the following properties of the acquired MRI signal space, which
is also known as the k-space:



• Each view provides, in part, the spatial frequency
information of the object in a particular location and
orientation. For rigid in plane motion, the imaged object
is constant over the scanned views. However, its
location and orientation may differ from view to view;

• If N  views of data are acquired, ranging from

2
NV −=  to 12 −= NV , the views in the middle of

the k-space (i.e. near 0=V ) contain the intensity
information, whereas the views towards the top and
bottom ends of the k-space contain the edge
information. Therefore, in the event of motion, strong
ghost edges are produced by the views that provide edge
information; and

• The effect of including view information for iV  ±=

( )12  2 1  where −= N...,,,i  in the reconstruction stage,

is twofold. Firstly, it improves stationary edge
information, but secondly it also introduces motion-
induced blur and ghosting artifacts.

According to the above properties of k-space, it is possible to
form a blurry image of the object undergoing rigid in-plane
motion, using only the low frequency information given by the
views in the vicinity of view 0=V . The resulting image
exhibits the orientation and location of the object at view 0=V .

Since the low frequency image exhibit blurred object edges, the
pre-processing algorithm is required to incorporate additional
high frequency information obtained from the views in the top
and bottom parts of the k-space. The algorithm should be capable
of extracting view information corresponding to the orientation
and location of the low frequency image, while discarding the
view information that lead to ghost artifacts. This is a non-trivial
task since the motion information is unavailable at each view.
The following section proposes a fuzzy algorithm, which is
capable of enhancing the object boundary edges while
suppressing the ghost artifacts in the image background.

2.1 Fuzzy Model

Let the whole set X  be defined by each pixel location
),( yxx =

&

 in the reconstructed NN ×  MR image. We define a

range of fuzzy sets in X , mapping the intensity information of
each progressive image im  reconstructed from views iV −=  to

iV +=  ( )12  2 1  where −= N...,,,i , in to membership functions

[9]. If the intensity distribution of the image im  is given by
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 that represents the pre-processed image pm

is now defined as the intersection [9] of the fuzzy sets iE
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given by the following equation:
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where N  is the number of acquired views [1].

3. CONTOUR EXTRACTION

The overall goal of this paper is to find a smooth contour, which
describes the boundary of the ROI most accurately. Hence, we
use a method based on the active contour model proposed by
Kass [10], since it has been proved successful in many such
applications. However, in order to overcome the drawbacks of
the original snake model, we use an attractable contour model
with enhanced features. Our attractable Snake model is defined
as follows:
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where ( )sV  is the deformable contour and arc length Ω∈s .

( )[ ]sVEint  and ( )[ ]sVimageP  are as given in the original

snake model [10]. ( )[ ]sVfeedbackE  is defined by the following

equation:

( )[ ] ( ) ( )[ ] ( )snsVvoltagePsdbfsVfeedbackE
&⋅∇⋅−=        (4)

where ( )sn
&

 is a unit vector, which represents the direction of

normal to deformable contour and the prime ( )sdbf  controls

feedback pulling (for expansion) or pushing (for contraction) on

snake. ( )[ ]sVfeedbackE  is designed to directly reflect the

potential energy variation ( )[ ]sVvoltageP∇  of image features

(i.e. edges). If the attraction from the desired image feature is
large enough to overcome the internal mechanical resistance (due
to bending and stretching) of the contour, and with the condition
that there is no external energy influencing, the snake can then be
attracted to the attraction source and adhere to it.

( )[ ]sVfeedbackE  responds to the variation of potential energy

of the snake while it is driven close to the desired contour and
will disappear automatically when the snake reaches the object.
Hence, the improved model can achieve the equilibrium of the
original snake. We solve the minimization process of snake
based on the fast greedy algorithm [11] because it reasonably
combines speed, flexibility and simplicity compared to dynamic
programming. In order to avoid inherent numerical instability,
we use a synthetic convergent criterion based on the
characteristic parameters of snakes approaching equilibrium,
which allows the snake to converge either oscillatingly or
normally to the usual contour or a subjective contour.



An overall optimal edge detection scheme was developed to
handle low contrast and noisy pre-processed MR images.  We
first split a 2-D Gaussian smoothing filter into two directions (i.e.
x and y), then implement a smoothing operator with the opposite
sequence of Sobel edge detecting. This approach presents
stronger edge strength, more competitive noise suppression,
higher efficiency in weaker edge detection and lower time cost
compared to the Canny detector [12].

In addition, a method of dynamic, linear interpolation was
employed to sense the local shape of the desired contour
accurately or to flow into the complicated shape of the object
contour properly. To avoid re-parametering after each
interpolation and to maintain the continuity of optimizing
iteration, we retain the original parameter setting at each contour
point and give the neighboring point's setting to each new
contour point. The threshold for average length of the contours
(GAP) can reflect the basic geometric property of snake.
Therefore in order to avoid clustering or even looping we remove
those snake points much closer to their previous points according
to GAP, during each interpolation.

4. RESULTS

The proposed algorithm has been applied to spin echo MRI
images subjected to severe rotational motion. Even a slight
rotation during the data acquisition can cause strong ghost
artifacts and spurious edges. We regard such motion as the worst
case scenario, for testing our algorithm. The motion involved
continuous rotations with maximum angular span of 40 degrees.
The total number of acquired views is 256, and the resultant
image size is 256256×  pixels, as shown in Fig. 1(a).

(a) (b)

Figure 1.  (a) Image with rotational motion artifacts; (b)
Pre-processed image.

The pre-processed image of Fig. 1(a) is shown in Fig. 1(b).
Notice that the image background has been cleared of ghost
artifacts, while reducing the motion induced blur, producing a
better-defined object area.

Since our snake model is less sensitive to the shape and position
of the initial contour, it can be any closed initial guess in the
image background.  Due to the interpolation scheme described in
Section 3, which re-sampled each initial contour before starting
minimization process of a snake, our algorithm can start from
very simple, automatically placed initials as shown in Fig. 2(a).

(a) (b)

Figure 2. (a) Initial guess for ROI; (b) Edge image

The overall optimal edge detection scheme described in Section
3 was employed, which picked up low contrast edges and
provided more than one pixel edge strength, as shown by the
edge image in Fig. 2(b). The final contour after the convergence
of the snake is shown in Fig. 3(a). The parameters used for the

iterations are 8.0=α , 2.1=β , 5.1=γ , 2.1=dbf  and

7=GAP , where γβα ,,  are the original snake parameters [10].

To illustrate the quality of our estimated ROI boundary, we
overlaid the extracted contour on the same image slice without
motion artifacts (Fig. 3(b)). The orientation of the estimated
contour is matched to fit the object with best possible fit. Notice
that, the estimated ROI boundary does not invade the object.
Such an invasion can affect both the motion correction and
motion parameter estimation stages. Since both these stages
heavily rely on minimizing the pixel energy outside ROI [3]-[6],
an invasion can remove parts of the object from the reconstructed
image by forcing the pixel energy to zero. However, allowing
significantly larger estimate for the boundary of ROI will result
in ambiguous estimation of motion parameters [3] and slow
convergence of reconstruction algorithms that use POCS [8].
Therefore, it is important to ensure that the ROI boundary is on
or outside but adjacent to the outer boundary of the object, as
shown in Fig. 3(b).

(a) (b)

Figure 3. (a) Extracted contour; (b) Extracted ROI
boundary overlaid on the motion artifact free image in
the best fitting orientation.

In order to compare our results with that of thresholding, we
obtained two images with threshold values 150 and 95 as shown
in Fig. 4(a) and Fig. 4(b). The value 150 was chosen so that most



of the ghost artifacts outside ROI were eliminated. However, this
resulted in ROI boundary invading the object, due to the loss of
edges (Fig. 5(a)). In order to preserve the object edges, the
threshold value was reduced to 95. However, this resulted in
residual ghost edges that mislead the Snakes algorithm, resulting
in an erroneous ROI boundary as shown in Fig. 5(b). It is
obvious from the comparative results that our algorithm produces
higher quality ROI boundary compared to thresholding.

(a) (b)

Figure 4. Threshold images of Fig. 1(a), using threshold
value: (a) 150; (b) 95.

(a) (b)

Figure 5. Extracted ROI boundaries from the threshold
images in Fig. 4, overlaid on the motion artifact free
image in the best fitting orientation. The threshold values
are: (a) 150; (b) 95.

5. CONCLUSIONS

The preliminary tests involving spin echo MR images indicate
that the proposed algorithm is capable of extracting the ROI
boundary from motion affected MR images, with high accuracy
and reliability without invading the object area. Compared to the
previously proposed techniques, our model is robust, less
subjective and can be applied in wide variety of motion including
severe rotations. In the future, the method can be tested with
many other types of motion such as expansion and out of plane
rotations. We believe that the proposed technique can be
combined with intelligent motion parameter estimation schemes
and POCS based motion correction algorithms to effectively
suppress motion artifacts in MR images.
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