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ABSTRACT
The objective of this paper is to produce a general formulation of
an order reduction procedure for testing the stability of discrete
time linear systems. The order reduction procedure involves a
series of iterations and, at each step of the iteration process, the
aim is to derive a new polynomial of order lower than the given
one. The new polynomial serves as the input to the following
iteration. A specific form of the formulation is considered in
which first order auxiliary polynomials are employed in the order
reduction process. There follows from this a new testing
procedure which is computationally more efficient than the
existing ones. Moreover the current methods appear as special
cases of the new test. An extension is further proposed which
employs second order auxiliary polynomials within the order
reduction formulation. This second order form is, however, for
all practical cases the limit to which such a procedure can be put.

1. INTRODUCTION

The stability test of a transfer function of a linear system is a
fundamental problem and as a result it has received considerable
attention through the years. There are many contributions starting
from the epoch making approaches of Routh and Hurwitz for
continuous time systems [1] [2] [3] [4]. The corresponding case
for discrete time systems is as old and as significant and the
pivotal contributions here are related to the work of Schur, Cohn,
and Marden, and the interpretation produced by Jury and
Fujiwara.[5] [6] [7] [7] [8] [9]. The have been additional
developments and interpretations which are contained in the
publications of Vaidyanathan and Mitra [10].

The improvements on the work of Schur and Cohn have focused
on the reduction of the computational burden associated with the
early procedure by the brilliant use of order reduction algorithms
as proposed by Marden [11]. These have led to the very efficient
Jury-Marden test [7], and is also the basis of the iterations found
in the Levinson-Durbin algorithm and in related work concerned
with lattice filter structures [12] [ 13 [14]. Intimately related to
these procedures are studies that are concerned with allpass
structures [17] [18] and positive real behaviour relative to the
unit circle [19].

2. THE GENERAL PRINCIPLES AND
THEORY

Given a real polynomial
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to determine whether its roots lie within 1|| =z . In principle this
could be done by root finding by this is an ill-conditioned
problem as indicated by Hadamard [15]. The Schur-Cohn
Stability Test relies on setting up square matrices of size nn 22 ×
and algorithmically reduced progressively to size 22 × . At each
stage to test stability their determinants are examined for
positivity. A computationally improved version is found in the
Shur-Cohn-Fujiwara Stability Test [7] but this is only marginally
computationally better. Further simplifications of the basic Schur
matrices have also been produced.

A fundamentally new direction is taken in the Jury-Marden
Stability Test. The basis for this test and related current and
efficient tests is order reduction by iteration. We are to employ
similar techniques in this contribution.

We need some basic results.

Observation 1:

On the unit circle )(zfn  and )( 1−zfn  are complex conjugates

and hence

|)(||)(| 1−= zfzf nn  and |)(||)(| 1−= zfzzf n
m

n

Observation 2: (Rouche’s Theorem [16]).

If on the unit circle the polynomials )(zf  and )(zg  are such
that

|)(||)(| zgzf <

Then )()( zgzf +  has the same number of zeros as )(zg .

General order recursion

Let there be real polynomials )(1 zg  and )(2 zg  each of order at

most p and a function )(1 zfn− , such that
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then we can write the following expression.
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The function )(1 zfn−  is desired to be a polynomial of degree

lower than the degree of the original polynomial.

The following conditions must prevail.

(i) The polynomial )()()()( 1
22

1
11

−− − zgzgzgzg  must be

either a factor of the right hand side above, or it must be a
constant.

(ii) On the right hand side of equation (3) the coefficients of

1,,1,0 , −= piz i
K  must all be zero to enable cancellation

process to take place. This cancellation is related to the

factor pz .

(iii) The degree of )(1 zfn−  must less than the degree of )(zfn

Moreover, for Rouche’s Theorem to be used in the development
of the test we must have on 1|| =z  either |)(||)(| 21 zgzg <  or

|)(||)(| 21 zgzg > .

The crucial part in the above is concerned with the choice for the
polynomials )(1 zg  and )(2 zg . These polynomials are taken in

our approach to be real and of the same order. Their role is to
enable the separation property crucial to the application of
Rouche’s theorem to be used as the deciding factor. There are
different options for these polynomials even when the order is
unity and these different possibilities give rise to different tests.

We give below the case for 1=p  i.e. a first order case. This
specific choice encompasses as a special case the well-known
Jury-Marden test. In addition by a judicious use of the degrees of
freedom available in a first order polynomial an improvement is
achieved in terms of the total computational burden associated
with this specific test.

We need at this juncture however, to establish the following
result which plays crucial significance in the development of the
algorithms.

Lemma I: On the unit circle 1|| =z  for any real α , and β , the

inequality |1||| zz αββα +<+  holds, provided that either 1|| >α
and 1|| >β  or 1|| <α  and 1|| <β .

Proof:

Let the modulus squared of )( βα +z  be

                                  ))(( 1 βαβα ++= −zzA

(4) and correspondingly the squared modulus s of )1( zαβ+  be

                                 )1)(1( 1−++= zzB αβαβ
(5) Both of these quantities are real and positive since they are
squared moduli. Their difference is given by

              )1)(1(1 222222 βαβαβα −−=−−+=− AB

(6) Thus the above equation (6) is positive only when either
1|| >α  and 1|| >β  or 1|| <α  and 1|| <β .

Hence the result follows.

Lemma II: Given a real polynomial )(zfn  of degree n , there

exists a real polynomial )(1 zfn−  of degree less than n  such that
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where βα ,  are real coefficients.

Proof

The proof is evident from the relationship that follows directly
from above
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which becomes upon the insertion of the polynomial form
equation (1) for )(zfn
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Thus we can set the constant term on the right hand side to zero
to facilitate cancellation from both sides of the equation. This
yields

                                            
np
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However, as it is evident from the above relationships in
equation (8), this value for β  also sets the highest term
coefficient on the right hand side equal to zero.

Thus without assigning a specific value to α  as yet, we have a
polynomial )(1 zfn−  of degree ln − . We can use this additional

freedom to reduce the complexity further either by making the
remaining highest term equal to zero or by making the linear
term equal to zero. The first option yields
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Thus at every iteration we can potentially reduce the degree of
the polynomial to be examined at the next iteration stage, by 2.

|1||| zz αββα +>+



3. THE STABILITY TEST

The above results with the aid of Rouche’s Theorem, can be put
into a form appropriate for a stability test as follows.

Given the real polynomial
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we can express it in a form
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We note that the real α , β  parameters determined from the
given polynomial coefficients above, would have values such
that either

                 1|| >α  and 1|| >β  or 1|| <α  and 1|| <β             (11)

in which case we shall have |1||| zz αββα +<+ , or the
conditions given by the inequalities (11) are not satisfied, in
which case we shall have |1||| zz αββα +>+ . These two
inequalities are in effect the determining relationships, which
provide the separation needed for the use of Rouche’s Theorem.

For stability we need to check the following:

1) If 1|| >α  and 1|| >β  or 1|| <α  and 1|| <β  then )(zfn  has

the same number of zeros within the unit circle as
)()( 1 zfz n−+ βα  (Rouche’s Theorem). The following two

conditions can be tested now to determine the location of the
zero associated with the factor )( βα +z

(a) If |||| αβ > , then the given polynomial is unstable.

(b) If |||| αβ <  then we can proceed to test the reduced degree

polynomial )(1 zfn−  (degree=n-2)

2) Otherwise )(zfn  has the same number of zeros within the

unit circle as )()1( 1
1

1 −
−

−+ zfzz n
nαβ  (Rouche’s Theorem).

Again the following two conditions must be checked in order to
locate the zero of the factor )1( zαβ+

(a) If 1|| <αβ , then the given polynomial is unstable.

(b) If 1|| >αβ  then we can proceed to test the reduced degree

polynomial )( 1
1

2 −
−
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n  (degree=n-2)

The singular cases corresponding to the parameters given in
equation (9) and equation (10), when they assume infinite values
are essentially covered by the above conditions.

4. SPECIAL CASES

Special Case (i) (The Jury-Marden Test)

For λβα == ,0 we have
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(12) There exists a real number λ  that makes )(1 zfn−  a

polynomial of degree ln −  namely
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This is the parameter that decides on the basis of Rouche’s
Theorem, which of the two components in equation (13) above is
to be considered at the next iteration of the algorithm. The
procedure is essentially Jury’s Test.

Special Case (ii) (A variant of the Jury-Marden Test)

For 0,1 == βα  and a slight readjustment of the parameters to
make this case appear in the same sense as case (i) we have
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There exists a real number λ , which makes )(1 zfn−  a

polynomial of order ln −  namely
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This case may be considered as a variant of the Jury-Marden
Test.

Special Case (iii)

For 1=α  we have the following result.

There exist real numbers β  and λ  which make )(1 zfn−  a

polynomial of degree ln −  such that
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We form the reverse polynomial as indicated in the earlier cases
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and hence by eliminating )( 1
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It follows therefore that for )(1 zfn−  to be a polynomial a

cancellation must occur between the two sides, namely the factor
)( β+z .

In effect implies that at β−=z  the right hand side must
disappear. This yields the condition below.
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The conditions set out earlier are now satisfied, and hence the
order recursion algorithm for the required stability test can now
be implemented.

This recursion as set out by equation (16) and equation (17) is
interesting from the theoretical point of view. It has a free



parameter to be selected but it is computationally more intensive
than the previous recursions.

5. THE SECOND ORDER CASE

The polynomials )(1 zg  and )(2 zg  were chosen for the above

approaches to be first order. The question arises, however,
whether a higher order choice may be even more efficient.

It should be observed that at some stage in the order reduction
process it becomes necessary to check the location of the zeros of
these polynomials as it is evident in steps 1 and 2 of the new
stability test.

Therefore, it is not feasible to have )(1 zg  and )(2 zg  of order

higher than the second because only then can we have simple
closed form formulae for the roots of a polynomial.

A specific choice for )(1 zg  and )(2 zg  for second order

polynomial reductions is then as follows.
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At every step of the iteration process of the order reduction
process there are eight subsidiary tests to be carried out to enable
the appropriate component in equation (1) to be chosen on the
basis of Rouche’s Theorem. In addition there is a corresponding
number of quadratics to be checked where their roots lie before
proceeding to the next iteration.

The subsidiary tests involved in the above procedure for the
second order case can be simplified under certain conditions, and
the complexity therefore can be reduced further. It is expected
that the full range of the alternative open to the user will be
explored in another publication.

Comments and Conclusions:

1) The computational savings in the general first order recursion
are associated with the removal of the multiplications of the
intermediate stages in the earlier recursions. The worst case
computational complexity is one half of that corresponding to
the Jury-Marden Test. Thus the triangular array of the Jury-
Marden Test is of complexity )2/)1(( −Ο nn , while the first
order general case presented above is of complexity

)4/)1(( −Ο nn .

2) In Signal Processing terms, the first order iteration procedure
can have implications and consequences on the design of lossy
lattice filters. This issue will be explored in the future.
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