
ABSTRACT
An important topic in image restoration is interpolation of
missing datain image sequences. Missing data is a result of
dirt on film and of ageing processes where the film contents
is replaced by data that bears little relationship with the
original scene. We present a method for interpolating miss-
ing data with the aim of achieving higher fidelity and more
consistency in the interpolated results than can be achieved
by existing methods. This by combiningautoregressive
models andmarkov-random fieldtechniques. Experimental
results confirm the superior performance of the proposed
method over existing methods.

1. INTRODUCTION

Missing data is a result of dirt on film and of ageing pro-
cesses where the film contents is replaced by data that
bears little relationship with the original scene. Methods
for detecting and correcting missing data can be found in
[1,2,3,4,5]. In this paper we concentrate on interpolating
missing data and we assume that the spatial locations of the
missing data are already known.

Methods for interpolating missing data are either heuristic
or model based. Heuristic interpolators, such as spatio-tem-
poral median filters [2], are fast but can introduce signifi-
cant errors as no constraints are placed on the relation
between interpolated intensities and their neighbors.
Model-based interpolators, based onmarkov random fields
(MRF) or 2D/3Dautoregressive(AR) models [2,3,4,5] do
take relationships between neighboring data into account
and give high quality restorations but are computationally
more involved. We focus on the model based interpolators.

Kokaram describes a method for interpolating missing data
based on a 3D AR model [2]. For each region containing
missing data a set of AR parameters is determined from a
selection of regional data from 3 consecutive frames. The
missing data is localized in the center of the region selected
from the central frame. The missing data are interpolated
such that the linear-mean-squared-prediction-error, com-

puted using the estimated AR parameters, is minimized. A
necessary assumption for this approach is that the data be
statistically stationary. Motion compensation is applied to
the data to fulfill this requirement. In [4] Goh points out
that the assumption of stationarity is not met for regions
that are occluded and that become uncovered (and vice
versa). Goh suggests estimating the AR model parameters
and interpolating the missing data using 2 frames only. One
frame is the current frame which contains the missing data.
The other frame is either the preceeding or succeeding
frame and this depends on what (motion compensated)
frame exhibits the smallest mean squared error with the
current frame in the region of the missing data, i.e. on the
direction in which the motion compensation gives the best
match. Kalra [5] further refines this approach by subdivid-
ing regions with missing data in multiple regions and inter-
polating the missing data for each region. This is motivated
by the fact that when the missing data covers a large region,
a single set of AR coefficients may not be able to model a
block of pixels adequately.

There are a number of drawbacks to the methods men-
tioned. First, the fidelity of the interpolated data in textured
regions and in noisy film sequences is not that of its sur-
roundings. This is because AR prediction can smooth data
(the approach taken by Kalra reduces the severity of the
problem but doesn’t solve it fundamentally). Second, the
problem of occlusion can in principle be solved following
the approach by Goh. However, the direction of interpola-
tion should be determined pixelwise instead of blockwise
because the resolution of the occlusion field is finer than
that what a block-based approach achieves. Furthermore,
by subdividing missing data in a number of regions, as sug-
gested by Kalra, mismatches may well occur within the
interpolated results near the region boundaries. Finally, all
the approaches assume that the reference regions in the
motion compensated previous/next frames do not contain
missing data in the regions of interest. This assumption is
not always correct and can lead to incorrect interpolated
data, as will be demonstrated.
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This paper presents a method for correcting missing data
with high quality that is robust to the problems mentioned.
Our approach to builds on the methods described. Here,
however, the interpolated data do not consist of intensities
predicted by AR models. Instead we paste pixels from
either the previous or from the next motion compensated
reference frames. Using explicit pasting instead of full spa-
tio-temporal data regeneration (as imployed in previous
work) is motivated by the observation that in many cases
the image sequence is redundant enough enough for simple
copy operations (i.e., 1 tap temporal AR process) to suffice
for data interpolation.

The strategy for determining the direction of interpolation
(i.e., paste from previous frame or paste from next frame)
is based on the assumption that the corrected image follows
a 2D AR process. This process reports on the consistency
of the interpolated result generated by the pasting process:
the pixel intensity from that reference frame that gives the
smallest prediction error is pasted into the current frame.
The approach described so far can lead to smoothing in the
sense those values will be pasted from the reference frames
that are as close as possible to the predicted values which,
inherently to AR prediction, can be smooth. To maintain
high fidelity we constrain the direction of interpolation to
be a consistent one locally.

Note that our method is robust to occlusion and missing
data in either the previous frame or in the next frame. Data
from occluded regions and from regions covered by dirt
tend to be very different from the original data and lead to
large prediction errors and will thus not be selected for
pasting.

The outline of the remainder of this paper is as follows. In
Section 2 we describe our approach in more detail. Then, in
Section 3, we describe the experiments and the results. We
conclude this paper with a discussion in Section 4.

2. CONTROLLED PASTING FOR INTERPOLATING
MISSING DATA

We denote the observed (motion compensated) previous,
current and next frames by , , respectively,
where indicates the spatial coordinates. is the
binaryblotch detection maskthat indicates for each pixel in
the current frame whether or not it is missing. It is assumed
that  has been determined, e.g. by following [1].

Let be a binaryocclusion mask. Usually occlusion
masks indicate whether or not data in a reference frame is
occluded. In our case, however, it indicates for each spatial
location which of the frames or is most appro-
priate to serve as a reference, e.g. “0” for and “1” for

. We now model the likelihood of an unimpaired
frame  to be proportional to:

, (1)

where is the set of all spatial locations and indi-
cates a linear prediction of . The first term in (1), which
given is a constant, states that the intensities at
uncorrupted sites are likely to be equal to the observed
intensities . Using the 2D AR model, which is our
underlying model of an unimpaired image, the second term
relates the original, clean data to either or
depending on the binary occlusion mask.

To achieve some local consistency in the occlusion mask,
the following prior is assumed:

, (2)

where is a constant that defines the strength of the self-
organization, and is the number ofeight-connected
neighbors of  that have different values from .

Combining (1) and (2), and ignoring the constant term in
(1), gives thea posteriori distribution of the corrected
frame and thedirection mask:

.(3)

Maximizing (3) w.r.t. and gives the corrected
image . However, as mentioned before, we wish to
avoid smoothing by restricting the correction to consist of
values pasted from the reference frames. It is appropriate to
have the occlusion mask control the pasting because
it indicates which reference frame is likely to be closest to
the original unimpaired data. We assume that at least one of
the reference frames is uncorrupted. Therefore let:

. (4)

Because of (4) depends directly on . Therefore,
searching the maximum of the a posteriori distribution (3),
given the observed data and the blocth detection mask,
requires finding the most likely configuration of . We
applysimulated annealing (SA) for this purpose.
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Figure 1 summarizes thecontrolled pasting(CP) approach.
The data put into the system consist of the current frame
and the motion compensated previous and next frames. The
blotch detection mask, which indicates for each pixel
whether or not it is considered to be part of a blotch, also
belongs to the input data. Initially the occlusion mask is
assigned binary values at random.

The main loop is as follows. First a corrected frame is
interpolated. Next the AR coefficients need to be estimated
(their true values are not known). Strictly speaking, in an
SA scheme, all unknowns should be sampled and this
includes the AR coefficients (e.g., see [3]). However, good
results are obtained by using theleast squaresestimate for
the AR coefficients at this step using the current state of the
image data. This helps increase the speed of the process.

We used a quarter plane prediction model, see Fig. 2. The
image regions are selected such that at most 20% of the
area consists of missing data. The predicted values are used

for evaluating the cost function
determined by the summation in
(3). Based on the computed
costs the direction of interpola-
tion is updated using simulated
annealing. The main loop is
repeated for the duration of the
cooling schedule. The system
output is the corrected frame .

3. EXPERIMENTS AND RESULTS

For our test sequence we use theWesternsequence which
was also used by Kokaram in [2]. This sequence has been
artificially corrupted with blotches that can have any gray
level. Figure3b shows frame 35 from this sequence, the
blotches are clearly visible. Figures3 a,cshow the motion
compensated previous and next frames (an hierarchical
blockmatcher with some smoothness constraints was used
for determining the required motion vectors) and it is
clearly visible that these frames corrupted by blotches as
well. The blotches were detected using the method
described in [1].

Although our method has been described using SA for
optimisation, we find that good results are obtained just by
using 15 iterations of the Gibbs Sampler alone, i.e. by let-
ting  fixed. The results shown are generated as such.

Figures3 d,e,fshow three different corrections of frame 35,
respectively using the3DAR method described by
Kokaram, theB3DARmethod described by Goh, and the
CPmethod proposed in this paper. All the corrected frames
show a great improvement over the corrupted frame. How-
ever, the3DAR and theB3DAR methods fail where the
motion compensated frames are corrupted (see the high-
lighted boxes in the figures). The former method fails
because it always incorporates both motion compensated
frames, even when data is corrupt in these frames. The lat-
ter method fails because a block based approach deter-
mines direction of interpolation regardless on the validity
of the data within the block. Figures3 g,h,izoom in on the
boxed regions in Figures3 d,e,f. Clearly, the proposed
method gives results with high fidelity and outperforms the
other methods in terms of visual quality.

4. DISCUSSION

We introduced a new method for interpolating missing data
in image sequences. It achieves high fidelity by pasting
data in a consistent manner instead of applying linear filter-
ing. In effect it is a controlled pasting process. The limited
number of iterations required for the simulated annealing
and the fact that only corrupted image regions have to be
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Figure 1. Overview of the CP scheme.
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processed makes the algorithm quite fast in practice. Our
method does not require explicit knowledge about missing
data in the reference frames. This is a useful property as
this reduces complexity for an overall detection and correc-
tion system, and, more important, it makes the interpolator
robust tomissesof the blotch detector (i.e. when the detec-
tor does not detect all the blotches in the reference frames).

Interpolating missing data is not only relevant in case of
old film sequences. It can also be applied to image
sequences that have been transmitted digitally and that
have been corrupted due to bit errors in the received (com-
pressed) data.
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Figure 3. (a) Motion compensated previous frame. (b) Current frame. (c) Motion compensated
next frame. (d), (e), (f) Restored frames using 3DAR, B3DAR and CP schemes respectively.
Note the differences within the boxed regions. (g), (h), (i) Zoom into boxed regions.


