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ABSTRACT

Beamformers which use only the Constant Modulus
Algorithm (CMA) are unable to track properly time-
variant signals in fast-fading channels. The Kalman
Filter (KF), however, has signi�cant advantage in time-
varying channels but needs a training sequence to op-
erate. A combined CMA and KF algorithm is therefore
proposed in order to utilise the advantages of both al-
gorithms. The associated stepsize of the combination
is also varied in accordance with the magnitude of the
output. Simulations are presented to demonstrate the
potential of this new approach.

1. INTRODUCTION

The Kalman �lter (KF) [1] is the optimal �lter for
reconstructing signals travelling through linear time-
varying channels. The KF has been employed for many
functions and con�gurations. For example, in [2], the
KF was used in decision feedback equalisers. The possi-
bility of a combined KF and Least Mean Square (LMS)
algorithm, which performs both equalisation and chan-
nel estimation was examined in [3]. This con�guration
achieves poor results, especially in fast-fading chan-
nels, because the tracking performance of the LMS al-
gorithm is restrictive [4]. A combination of KF and
Maximum-Likelihood Sequence Estimator (MLSE), in
which the KF and MLSE were respectively used to
track the channels and predict the signals, has been
tested [5]. This is a more interesting approach be-
cause the KF tracks the channels potentially faster
than LMS; and the MLSE, especially the multi-survivor
algorithm, yields low Bit Error Rate (BER). However,
its computational cost and block delay restrict its prac-
tical value. There has been an attempt in [6] to sim-
plify the computation of the combination of KF and
MLSE, this simpli�cation still exhibits expensive com-
putational cost, compared to those of adaptive Mini-
mum Mean Squared Error (MMSE) type algorithms.

The CMA algorithm [7, 8] is one of the most pow-
erful MMSE-type algorithms for stationary channels.

CMA needs neither training sequences, for learning the
impulse response of the channels, nor array calibra-
tion, i.e., it can operate in a temporally and spatially
blind mode. Furthermore, its computational complex-
ity is very low at O(N ), where N is the number of
sensors. However, in fast-fading channels the ampli-
tude of the received signals change very quickly. As
for other gradient-descent type algorithms, the CMA
algorithm has very limited tracking quality. Hence, it
cannot track properly the outputs of the beamformer.

The next section states the problem of beamform-
ers when the incoming sources su�er from fast-fading
channels. In section 3, a new beamformer using a com-
bination of the KF and CMA algorithms is proposed.
Simulations in section 4 will demonstrate the potential
of the proposed algorithm. Finally, conclusions will be
drawn.

2. PROBLEM STATEMENT

IfN sources, si(k), i = 1; : : : ; N impinge upon an array
of M sensors in directions which make angles �i(k) to
a reference line of the array, the measurement signals,
x(k) = [x1(k); : : : ; xM(k)]T, may be written as

x(k) =
NX

i=1

a(�i(k))Gi(k)si(k) + n(k) (1)

where (�)T denotes the transpose operator, a(�), Gi(k)
and n(k) respectively represent a steering vector of the
array, channel attenuation, and the additive measure-
ment noise.

An output of a beamformer, y(k), is a summation
of a set of weighted measurement signals

y(k) = w(k)Hx(k) (2)

where (�)H denotes the Hermitian transpose operator,
andw(k) = [w1(k); : : : ; wM(k)]T represents the weight
vector of the summation.

In this paper, all si(k) are assumed to be zero-mean,
white and have �nite alphabets. The measurement



noises are assumed to be zero-mean, white, Gaussian,
and mutually uncorrelated with all measurement sig-
nals and each other.
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Figure 1: Structure of the beamformer using the com-
bined KF and the CMA algorithms

3. COMBINING CMA WITH THE KF

An algorithm is required to control w(k), or the beam-
former, to capture some desired signal. If the channels
are non-stationary, the algorithm has also to track the
time variations. In fast-fading channels, Gi(k), which
has Rayleigh or Rician distribution, can change very
quickly within a few milliseconds [9]. Therefore, the
algorithm is required to have very good tracking qual-
ity.

3.1. Kalman Filter

A KF which minimises the Bayesian MSE cost

JKF = Efkw(k) � ŵ(k)k22jd(k)g (3)

and estimates w(k) with ŵ(k), given the transmitted
sequence d(k), is described by the following equations
[10]

w(k) = T(k)w(k � 1) (4)

M(k) = T(k)M(k � 1)T(k)T +Q (5)

K =
M(k)x(k)

�2n + x
T(k)M(k)x(k)

(6)

w(k) = w(k) + (d(k)�w(k)Hx(k))�K� (7)

M(k) = (I �Kx(k)T)M(k) (8)

where k � k2 and (�)� respectively denote 2-norm and
conjugate operators, T(k) and Q respectively repre-
sent a known M � M state transition matrix and a
covariance matrix of the process noise, and M(k) is
the prediction error matrix. The Kalman gain is ex-
pressed by K. The identity matrix and measurement
noise power are respectively denoted by I and �2n.

Even though the KF has good tracking quality, it is
normally a non-blind algorithm. Non-blind algorithms
have very restricted applications in fast-fading channel
environments because they need very frequent and long

training sequences due to fast and large variations of
the channels.

3.2. Constant Modulus Algorithm

The conventional CMA 2-2 algorithm [8] takes the fol-
lowing form

e(k) = [jw(k)Hx(k)j2 � R2][w(k)
Hx(k)] (9)

w(k + 1) = w(k)� 4�e�(k)x(k) (10)

where Rp =
Efjs(k)j2pg
Efjs(k)jpg2 , p = 2, is a constant called the

dispersion constant, and � represents the stepsize of
adaptation.

In order to track fast time-varying channels, the
stepsize is required to be large. However, the step-
size cannot be too large due to the stability condition,
especially in fast-fading channels which have substan-
tial disturbance. Hence, the tracking capability of the
CMA algorithm is limited.

3.3. Variable Stepsizes

The CMA algorithm tends to capture the source which
has maximum power in the measurement signals [11].
In fast-fading channels, the power of one source may
dominate at one time but not at another. Hence, the
CMA algorithm may reconstruct one source at one
time, and a di�erent source at another time, thus, mix-
ing up the sources would occur.

The blind KF can also switch the sources it recon-
structs because the source which has maximum power
also minimises, Efkwi(k) � ŵi(k)k

2
2jŝi(k)g. Since the

KF is faster at tracking than CMA, it can potentially
switch reconstructing the sources more often, in other
words, its switching problem is more severe than that
of CMA.

In [12], the stepsize of adaptation of CMA is time-
varying and a function of the magnitude of the output
of the beamformer.

�v(k) = �f(jy(k)j) (11)

Function f(x) is designed to slow down the adap-
tation when the amplitude of the output of the beam-
former is reduced. This usually occurs when the cap-
tured source fades. Therefore, this manoeuvre increases
the tendency that a beamformer will capture only a
single source.

3.4. The New Combination

The proposed combination of the KF and the CMA
algorithms attempts to utilise advantages of both algo-
rithm, e.g. blindness and tracking quality. The blind



property is retained in this combination because the
KF which tracks the weight vector, gets a training se-
quence from the output of the beamformer via a slicer
as shown in Fig. 1. The KF then helps CMA to adapt
e�ectively the weight vector of the beamformer.

A cost function of the combination is de�ned as

J 0
, Ef(jwB

H
i
(k)x(k)j2 � R2)

2g

+ �EfkwBi(k) � ŵBi(k)k
2
2jŝi(k)g (12)

where wBi(k) and ŵBi(k) represent respectively the
weight vector of the beamformer and its estimate. The
�rst term of the cost function is the cost function of
the CMA and the other term is that of the KF with
the scale of �.

Then the adaptation of wBi(k) with variable step-
size can be formulated as

yi(k) = wB
H
i
(k)x(k) (13)

wBi(k + 1) = wBi(k) + f(jyi(k)j)[aC + �aK ](14)

where aC = 4�(R2 � jyi(k)j2)y�i (k)x(k) and aK is the
adaptation part obtained by the CMA and the KF al-
gorithms.

The adaptation aK is the right term of (7), but with
d(k) replaced with ŝi(k), which is the sliced version of
yi(k) by function g(�). Equation (7) may be rewritten
as

ŝi(k) = g(yi(k)) (15)

aK = (ŝi(k) �wKi(k)
Hx(k))�K� (16)

wKi(k) = wKi(k) + aK (17)

where wKi(k) is the weight vector of the KF in the
combination (it also replaces w(k) in (4)).

The value of � controls the amount of the blind KF
part in the adaptation of the beamformer. A larger �
improves adaptation speed, but if it is too large, it will
cause the switching e�ect.

The weightwBi(k) vector in the beamformer should
be updated by wKi(k) in the KF after some adapta-
tions. If the update is too often, the switching e�ect
will again occur.

4. SIMULATIONS

To demonstrate the tracking performance of the com-
bination, an experiment is set. Consider that two un-
correlated signals travel through fast-fading channels
to an array of two omnidirectional sensors in directions
of 10� and 20� to the broad side of the array. The
sources are modulated with Binary Phase Shift Key-
ing (BPSK) and have the same average power �2s = 1
when they arrive at the array. They both su�er from
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Figure 2: Fast-fading channels of source 1 (solid line)
and source 2 (dot-dashed).

Doppler frequency spread of 60 Hz, which corresponds
to mobiles travelling about 45 mi/hr, if the carrier fre-
quency is 900 MHz. We assume that the baud rate
of transmission is 24300 baud/s (the IS-54 standard).
Simulation of the Rayleigh channels of both, is iden-
tical to the approach in [12], and is shown in Fig. 2.
The additive noise at each sensor is zero-mean, white,
Gaussian and uncorrelated with the sources and each
other. Its power is calculated to be 0.01 of the average
mean square power of the measurement signal at each
sensor.

The real parts of the measurement signals are only
passed to beamformers to avoid the mix-up e�ect [13,
14]. The tracking performance of beamformers using
only the CMA and that of beamformers using the com-
bination will be compared. The weight vectors of all
beamformers will be initialised to the correctly cap-
tured signals.

The stepsize, � of CMA is chosen to be 0.01, � is
0.2. The weight vector wBi(k) in the combination will
be initialised by the weight vector of the KF wKi(k)
every 50 iterations. The function f(x) will return 1 if
x � 0:8, 0.8 if 0:5 � x < 0:8, 0.2 if 0:2 � x < 0:5, and
0 otherwise.
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Figure 3: Weight vector (sensor 1 (upper lines) and sen-
sor 2 (lower lines)), wB1(k) the proposed combined al-
gorithm (dashed lines), wK1

(k) the Kalman �lter (dot-
ted lines), and that of the beamformer using only CMA
(dot-dashed)
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Figure 4: The magnitude of the outputs of the beam-
former corresponding to source 2 using only CMA (up-
per graph) and using the proposed combination (lower
graph)

Fig. 3 shows the movement of the weight vector
wBi(k) and wKi(k) and that of the beamformer using
only the CMA. It illustrates that CMA alone cannot
follow the movement of the channels and the combina-
tion is potentially fast enough. The magnitude of an
output of the beamformer using only CMA in Fig. 4,
upper graph, shows that the CMA cannot retain the
constant modulus property of the source. As a result
of better tracking, the output of the beamformer us-
ing the combination in the lower graph exhibits much
better constant modulus property.
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Figure 5: The symbol di�erence of the output of one
beamformer and source 1 (upper graph), and that of
the other beamformer and source 2 (lower graph)

The symbol di�erence of the outputs of beamform-
ers and sources is shown in Fig. 5. The vertical lines in
the graphs indicate bit errors. The places where the er-
rors occur correspond to the deep fading of the sources
below the measurement noise (see Fig. 2). These two
graphs show that the combination with variable step-
size does not mix-up the sources.

5. CONCLUSIONS

A novel structure for a beamformer using a combina-
tion of the CMA and the KF algorithms has been pro-
posed for tracking signals travelling through fast-fading
channels. A variable stepsize has also been employed
in the proposed algorithm. The simulations have sup-
ported the advantages of the proposed algorithm.
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