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ABSTRACT

Computing the linear least-squares estimate of a high-di-
mensional random quantity given noisy data requires solv-
ing a large system of linear equations. In many situations,
one can solve this system efficiently using the conjugate
gradient (CG) algorithm. Computing the estimation error
variances is a more intricate task. It is difficult because the
error variances are the diagonal elements of a complicated
matrix. This paper presents a method for using the con-
jugate search directions generated by the CG algorithm to
obtain a converging approximation to the estimation error
variances. The algorithm for computing the error variances
falls out naturally from a novel estimation-theoretic inter-
pretation of the CG algorithm. The paper discusses this in-
terpretation and convergence issues and presents numerical
examples.

1. INTRODUCTION

For certain large linear least-squares estimation problems,
especially in medical imaging and remote sensing, one is
interested in computing not only estimates but also estima-
tion error variances. The error variances provide important
quantitative information concerning the quality of the esti-
mates that can be used in subsequent data analysis and fu-
sion. This paper presents a method for computing both the
estimates and the error variances. The method is efficient
for a significant number of large estimation problems.

The estimation algorithm presented in this paper has
connections to a variety of algorithms for solving linear
algebra problems. In particular, one can view the estima-
tion algorithm as a variant of the conjugate gradient (CG)
method for solving linear systems of equations. Paige and
Saunders have also discussed a variant of the CG algorithm,
LSQR, that is capable of computing an approximation to
the error variances [4]. Unlike the algorithm proposed here,
however, that approximation often does not converge. Other
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work to which our algorithm is related includes that on Kry-
lov subspace model reduction [3,8]. These algorithms gen-
erate a reduced-order, deterministic model of a dynamic
system. Our algorithm also generates a reduced-order mod-
el using a Krylov subspace method, but the model is static
and stochastic, in nature.

Section 2 derives the algorithm, Section 3 discusses con-
vergence issues, and Section 4 presents numerical exam-
ples.

2. ALGORITHM DERIVATION

Consider the problem of forming the linear least-squares es-
timate (LLSE) of a zero-meann-dimensional random vector
x given anm-dimensional linear measurementy = Cx+ v

wherev is a zero-mean random variable uncorrelated with
x andC is a deterministic matrix. Denote the covariance
of x by �x and that ofv by R. The LLSE ofx and asso-
ciated error covariance are given byx̂(y) = �xC

T��1y y

and�e(y) = �x � �xC
T��1y C�x, respectively, where

�y = C�xC
T + R is the covariance ofy. If one as-

sumes that multiplication by�x andC is efficient, then the
computation of̂x and�e is dominated by matrix-vector and
matrix-matrix products involving the inverse of of�y.

The work of performing these multiplies by a matrix
inverse could be reduced if one had available a set of lin-
early independent vectorspi that whiten the data. In other
words, one desirespi such thatE
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equals one ifi = j and zero otherwise. Then, the estimate
of x based ony is the same as that based onpT1 y; : : : ; p

T
my.

Furthermore, one can use the following recursion to com-
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where(�)ii denotes theith element of a matrix,(�)i denotes
the ith element of a vector, andi runs from one ton. The
recursion is initialized by settinĝx(pT1 y) = �xC

T p1p
T
1 y

and
�
�e(p

T
1 y)

�
ii
= (�x)ii � (�xC

T p1)
2
i for i = 1; : : : ; n.

One method for recursively choosingpi that whiten the
data is as follows:

p1 =
yp

yT�yy
(3)

rk = y � ŷ(pT1 y; : : : ; p
T
k y) (4)

�k+1 = rk � (rTk �ypk)pk (5)

pk+1 =
�k+1q

�Tk+1�y�k+1

(6)

whereŷ(pT1 y; : : : ; p
T
k y) = �y(p1p

T
1 + � � � + pkp

T
k )y is the

best linear estimate ofy based on the linear functionals ofy,
pT1 y; : : : ; p

T
k y (for the purposes of forminĝy, thep1; : : : ; pk

are viewed as deterministic vectors). The idea here is to
first choosep1 / y and such thatVar(pT1 y) = 1. The
remainingpk are defined by a recursion. First, the error,rk ,
in estimatingy based onpT1 y; : : : p

T
k y is computed. Then,

rTk y is made uncorrelated withpTk y to form�Tk+1y. Finally,
�Tk+1y is normalized to have unit variance.

That thepi chosen according to (3)-(6) whiten the data
follows from standard results concerning the CG algorithm.
This method for picking thepi is, in fact, the CG algorithm’s
method for picking conjugate search directions when com-
puting��1y y. In the context of estimation,�y-conjugate
means white; so, the standard theorems for demonstrating
that thepi are�y-conjugate imply that thepTi y are white
[1,2].

Much of the theory regarding the CG algorithm exploits
the fact that

span(p1; : : : ; pk) = span(y;�yy; : : : ;�
k�1
y y); (7)

which is the Krylov subspace of dimensionk associated
with the vectory and matrix�y. Thus, the proposed es-
timation algorithm is computing estimates and error vari-
ances for the problem of estimatingx based on the projec-
tion of the measurementsy onto a Krylov subspace. Note
that the novelty of the Krylov subspace estimation algorithm
is its ability to exploit an estimation-theoretic interpretation
of CG to compute estimation error variances.

3. CONVERGENCE ISSUES

Assuming that one can efficiently multiply vectors by�y

and�xC
T , the proposed method for computing estimates

and error variances is efficient provided that one can stop the
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Figure 1: This picture illustrates the statement of The-
orem 1 in [6]. The vector�j is an eigenvector of�y,
and�?j represents the directions in the orthogonal comple-
ment ofspan(�j). The vectorsp�1;j , p

�
2;j , andp�3;j are the

closest unit length vectors inspan(p1), span(p1; p2), and
span(p1; p2; p3), respectively, to�j . The theorem estab-
lishes the rate at which thep�i;j are approaching the eigen-
vectors�j asi tends to infinity.

recursion in (1) and (2) after a few number of stepsk such
thatx̂(pT1 y; : : : ; p

T
k y) � x̂(y) and
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�e(p
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k y)
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ii
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for i = 1; : : : ; n. The standard convergence re-
sults for CG imply that one can stop after a few number of
steps and obtain a good approximation tox̂(y) [1,2]. How-
ever, the convergence of the computed error variances does
not immediately follow from these standard results.

Analyzing the convergence of the computed error vari-
ances is difficult, in general, but the analysis can be carried
out for certain special cases. In particular, one can analyze
the situation in whichx, v, andy are jointly Gaussian ran-
dom vectors,C = I , R = I , and�x has eigenvalues that
decrease geometrically. A description of the three major
pieces of the analysis is provided here. More details can be
found in [7].

The first piece of the analysis bounds the angle between
the span of the firstk conjugate search directions,

span(p1; : : : ; pk); (8)

and the dominant eigenvectors of�y. By Theorem 1 in [6],
this angle is rapidly decreasing provided that the datay has
significant components in the directions of all its eigenvec-
tors (see Figure 1). The second piece of the analysis es-
tablishes that, with probability one,y has significant com-
ponents in the directions of all its eigenvectors. Specifi-
cally, the components ofy in the directions of its eigen-
vectors, divided by the corresponding eigenvalues, are uni-
formly bounded away from zero. The third piece of the
analysis consists of noting that�x and�y have the same
eigenvectors and that the corresponding eigenvalues differ
by one. These three facts imply that thepi are tending to
the direction of the small eigenvectors of�x; so, only the
first fewpi are significant in the recursion (1) and (2).



4. NUMERICAL EXAMPLES

Results from running the Krylov subspace estimation algo-
rithm on two synthetic examples are presented here. In both
cases, a computer generates a realization of the random vec-
tor to be estimated,x, and noisy observations of the vector,
y. The estimation algorithm is then run for a certain number
of steps to obtain estimates ofx and estimation error vari-
ances. The number of steps needed is determined by trial
and error. Numerical issues surrounding the�y-conjugacy
of thepi are addressed using a non-standard implementation
of the CG algorithm that incorporates techniques developed
by Parlett and Scott for maintaining the orthogonality of the
Lanczos vectors in the Lanczos algorithm [5]. Further im-
plementation details can be found in [7].

Figure 2 depicts results for estimating 1024 samples of
a fractional Brownian motion (fBm). The fBm has a Hurst
parameter of0:75 and is scaled to have unit variance at time
one. The measurements of the fBm consist of the sam-
ples in the intervals[0; 0:25] and[0:75; 1] embedded in in-
dependent zero-mean white Gaussian noise with variance
3:2. The solid line in Figure 2a is the path of the fBm, and
the dashed lines are the computed estimate and the estimate
plus and minus the square root of the computed error vari-
ances,i.e., the error standard deviations. Figure 2b depicts
the error standard deviations by themselves, and Figure 2c
depicts the difference between the error variances computed
using the Krylov subspace algorithm and the optimal ones
computed using direct methods in MATLAB on a machine
with a floating point precision of2:2�10�16. The results of
Figure 2 were generated using nine steps of the algorithm.
That only nine steps were needed indicates that the esti-
mation problem is solved by reducing the512-dimensional
measurement vector to a nine-dimensional one.

Figure 3 depicts results for estimating a stationary Gaus-
sian random field on a32 � 32 toroidal grid. The power
spectral density (collection of eigenvalues) of the field is
given by

0:3
p

i2+j2

P
�15�k;l�16 0:3

p
k2+l2

(9)

where�15 � i; j � 16. The sum in the denominator sets
the variance of the field to one. Measurements are made
of those random field elements whose coordinates(i; j) are
such that�15 � j � 16 and�15 � i � �8 or 9 �
i � 16. The measurements contain independent zero-mean
white Gaussian noise with variance16. Figure 3a depicts
the random field to be estimated; 3b, the computed esti-
mates; 3c, the computed error standard deviations; and 3d,
the difference between the error variances computed using
the Krylov subspace estimation algorithm and the optimal
ones computed using direct methods in MATLAB. The re-
sults shown in Figure 3 were generated using50 steps of
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Figure 2: The solid line in (a) represents a fBm with Hurst
parameter0:75 and a variance at time one of one. The dot-
ted lines in (a) represent the computed LLSE based on noisy
sparse measurements of the fBm and the LLSE plus and mi-
nus the computed error standard deviations. The computed
error standard deviations are depicted by themselves in (b),
and the difference between the error variances computed us-
ing the Krylov subspace estimation algorithm and the opti-
mal ones computed using direct methods in MATLAB are
depicted in (c).

the algorithm. That50 steps were used indicates that the
estimation problem was solved by reducing the 512-dimen-
sional measurement vector to a 50-dimensional one.

For both of these examples, the Krylov subspace estima-
tion algorithm has efficiently computed estimates and esti-
mation error variances. The error variances are close to the
optimal estimation error variances relative to the maximum



a priori variance over the domain of the problem. The algo-
rithm has also been tested on estimation problems involving
other prior covariances and measurement structures [7].

5. CONCLUSION

This paper presents an estimation-theoretic interpretation of
the CG algorithm that has led to a novel method for com-
puting estimation error variances for linear least-squares es-
timation problems. Analysis and numerical examples es-
tablish that the algorithm works and is efficient for certain
problems. These promising results encourage further inves-
tigation. Potential topics of research include an extensive
examination of the range of applicability of the algorithm
and the development of an automatic stopping criterion for
selecting the number of steps needed to obtain good accu-
racy.
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Figure 3: The surface in (a) depicts a stationary random field
on a32 � 32 toroidal grid. The computed LLSE based on
noisy sparse measurements of the field is depicted in (b), the
computed error standard deviations are depicted in (c), and
the difference between the error variances computed using
the Krylov subspace estimation algorithm and the optimal
ones computed using direct methods in MATLAB are de-
picted in (d).


