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ABSTRACT

We propose an efficient programmable transmit-receive digital fil-
ter structure consisting of a pulse-shaping filter (PSF) and a cas-
caded integrator-comb (CIC) filter which is applicable to variable-
rate digital communication systems. The CIC structure is a hard-
ware-efficient means of constructing programmable interpolation
and decimation filters, but it introduces a large amount of inter-
symbol interference (ISI). We solve this problem by proposing a
filter design method that determines the PSF coefficients such that
the cascade of the PSF and CIC filter exhibits the desired frequency
response.

1. INTRODUCTION

Interpolation and decimation filters are important elements in digi-
tal communication systems. Fig. 1(a) shows a variable-rate digital
modulator, and Fig. 1(b) shows the corresponding digital demod-
ulator filter structure. In the modulator, the PSF bandlimits and
shapes the signal to accommodate the band-limited channel and
to achieve zero ISI, and the interpolation filter increases the sam-
pling rate in accord with the difference between the symbol rate
and the IF center frequency and attenuates the images due to the
upsampling. In the demodulator, the decimation filter reduces the
sampling rate and acts as the anti-aliasing filter for the downsam-
pling, and the PSF completes the matched filter structure. In QAM
systems, the cascade of the PSF and interpolation/decimation filter
typically exhibits a square-root Nyquist-filter frequency response.
Thus, the cascade of the modulator and demodulator produces a
Nyquist-filter response which ideally exhibits zero ISI. In order to
accommodate a variety of applications with different symbol rates
and IF center frequencies, it is desirable for these filters to be pro-
grammable and as efficient as possible. We propose such a filtering
system including, in particular, the method of designing the PSF.

2. CIC FILTER

The interpolation/decimation filter has a cascaded integrator comb
(CIC) structure [1]. This is a very hardware-efficient way to con-
struct a programmable interpolation/decimation filter since it does
not involve the storing of filter coefficients or the use of costly mul-
tipliers. Fig. 2 shows a CIC interpolation filter, and Fig. 3 shows
a CIC decimation filter. They consist of two main sections: the
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Fig. 1. (a) Modulator block diagram. (b) Demodulator filter block
diagram.

cascade ofP combs with the transfer function
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and the cascade ofP integrators with transfer function
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They are separated by an expander/decimator of ratioM . After
moving the expander/decimator through the combs/integrators by
application of the noble identities [2], the CIC filter becomes a
single lowpass filter with transfer function
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and frequency response
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This linear-phase frequency response has a lowpasssinMx
sinx

char-
acteristic with nulls at integer multiples of1

M
Fs, whereFs is the

higher sampling frequency. Thus, the images/aliases that result
from the expansion/decimation are attenuated by this “natural” re-
jection. The location of the worst-case image/alias rejection and
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Fig. 2. CIC interpolation filter with DC gain normalization.

the passband edge are determined by the rate changeL of the pre-
ceding/following PSF. Normalized with respect to the high sam-
pling rateFs = 1, the passband edge is

fC =
�

LM

1

2�
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2LM
(5)

and the worst-case image/alias rejection occurs at

fAI =
1

M
� fC =

2L� 1

2LM
: (6)

Fig. 4 shows the “natural” rejection and the passband and imag-
ing/aliasing bands for a single-stage (P = 1) CIC filter withL =
4. The passband response suffers from droop which will cause
ISI. Fig. 5 shows the worst-case passband droop and image/alias
rejection as a function of the rate changeM for a P -stage CIC
filter with L = 4. Typical QAM systems require at least 45 dB
of out-of-band attenuation, and at this amount of image/alias re-
jection, the amount of CIC-filter-induced ISI is more than can be
tolerated. A sharpened CIC filter [3],[4] can be used to smooth
out the passband, but this approach requires multiple copies of the
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Fig. 4. Single-stage (P = 1) CIC frequency response forM = 8
with imaging/aliasing bands shown forL = 4.
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Fig. 3. CIC decimation filter with DC gain normalization.

basis filter. A more hardware-efficient way is to compensate for
the passband droop by pre/post-distorting the signal in the preced-
ing/following PSF. The CIC filter also has an intrinsic DC gain of
MP . The normalization of overall DC gain is achieved by using
the method described in [4]. First, the DC gain is coarsely scaled
by down-shifting the signal byK = dlog2M

P e bits. Then the
gain is fine-tuned by programming the PSF to have a DC gain of
2K

MP
.

3. PSF

It is desirable for the PSF to have linear phase so roughly half
of the coefficients need to be stored. In addition, the PSF must
provide the required stopband attenuation for the system as well
as a variable roll-off factor� to accommodate different spectral
shaping requirements. The PSF design is therefore a transmit-
receive square-root Nyquist-filter design problem with the added
constraint of passband droop compensation and gain adjustment.
Of course, the linear-phase requirement of the PSF and the desire
for the cascade of the PSF and CIC filter to exhibit zero ISI and
a matched-filter response cannot all be met and therefore design
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Fig. 5. Worst-case passband droop and image/alias rejection as
a function of the rate changeM for aP -stage CIC filter with
L = 4.



decisions must be made. We have chosen to relax the zero ISI
constraint and to design a PSF with linear phase whose cascade
with the CIC filter exhibits a matched filter response with minimal
ISI.

4. PSF COEFFICIENT DESIGN ALGORITHM

A coefficient computation methodology has been developed to de-
sign filters which meet the above specifications. First, an appropri-
ate length CIC filter is determined that will provide the necessary
stopband attenuation for the image/alias with the desired interpo-
lation/decimation ratioM . Next, an oversampled byLNyquist fil-
ter is generated [5]-[7] which gives twice the desired out-of-band
attenuation required by the modulator. Then, the square root of
the Nyquist-filter frequency response is calculated. This is the tar-
get frequency responseHTARG(e

|!) for the cascade of the PSF,
expander, and CIC filter in the modulator. The linear-phase coef-
ficients of the PSF are then designed so thatHTX(e|!), the fre-
quency response of the cascaded PSF and CIC filter, is as close
as possible to the target response. This is accomplished by us-
ing linear programming. If we let the PSF be anN -tap (N odd)
linear-phase FIR filter, then its frequency response is given by

HPSF (e
|!) = h0 +

(N�1)=2X
n=1

2hn cos!n: (7)

The frequency response of the CIC filterHCIC(e
|!) is given by

(4). Therefore,
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|!) "M HCIC(e

|!)2�K (8)

where"M indicates the frequency compression byM of the ex-
pander and2�K is the coarse DC gain normalization. The pass-
band, transition band, and stopband ofHTX(e|!) are constrained
to be as close as possible to the desired targetHTARG(e

|!).
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where�i is the band ripple. The above constraint is converted into
linear programming problem format:
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where

Wp = passband weight, �p = passband ripple,
Wt = transition band weight, �t = transition band ripple,
Ws = stopband weight, �s = stopband ripple,
!p = passband edge,
!s = stopband edge.

The full-precision coefficients obtained from the solution of the
linear programming problem are then quantized to the desired
number of bits by rounding followed by a bivariate local search
[8]. Finally, the system is simulated with the designed filters, and
the ISI signal-to-noise ratio (SNR) is calculated.

5. RESULTS

Fig. 6 shows the filter design results for a 71-tap oversampled-by-
four (L = 4) PSF with� = 0:25 and 12-bit coefficients. The CIC
filter has four stages (P = 4) and the interpolation/decimation
ratioM = 3. The frequency responses are normalized with re-
spect to the high sampling rateFs = 1. The CIC filter frequency
response shows the coarse DC gain normalization, and the PSF
frequency response shows the fine normalization. Since the max-
imum PSF coefficient magnitude [7] is1=L whereL is greater
than or equal to 2 and the maximum additional gain is less than
or equal to 2, there is enough dynamic range to accommodate the
fine gain adjustment without the need for increasing the coefficient
wordlength. The additional gain automatically ends up in the PSF
coefficients as the frequency response of the cascade of the PSF,
expander, and CIC filter given by (8) is designed to be as close as
possible to the target response which has unity gain. Table I lists
the 12-bit PSF coefficients, and Fig. 7 shows the passband ripple
for the cascade of the PSF and CIC filter and the target square-root
Nyquist filter. The filters were simulated in the system of Fig. 1
resulting in an ISI SNR of 67 dB.
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Fig. 6. Filter design results showing the frequency response of the
(a) PSF, (b) CIC filter, (c) cascade of the PSF and CIC filter,
and (d) the target square-root Nyquist filter normalized with
respect to the high sampling rateFs = 1.



TABLE I
PSF COEFFICIENTS

Coefficient Value

h(0) = h(70) = -0.000976562500
h(1) = h(69) = 0.000488281250
h(2) = h(68) = 0.000488281250
h(3) = h(67) = 0.001464843750
h(4) = h(66) = 0.000488281250
h(5) = h(65) = -0.000488281250
h(6) = h(64) = -0.002441406250
h(7) = h(63) = -0.002929687500
h(8) = h(62) = -0.000976562500
h(9) = h(61) = 0.002441406250
h(10) = h(60) = 0.005371093750
h(11) = h(59) = 0.005371093750
h(12) = h(58) = 0.000976562500
h(13) = h(57) = -0.005371093750
h(14) = h(56) = -0.010253906250
h(15) = h(55) = -0.008300781250
h(16) = h(54) = 0.000488281250
h(17) = h(53) = 0.011718750000
h(18) = h(52) = 0.017578125000
h(19) = h(51) = 0.011718750000
h(20) = h(50) = -0.004394531250
h(21) = h(49) = -0.022460937500
h(22) = h(48) = -0.028808593750
h(23) = h(47) = -0.015625000000
h(24) = h(46) = 0.013183593750
h(25) = h(45) = 0.041503906250
h(26) = h(44) = 0.047363281250
h(27) = h(43) = 0.019531250000
h(28) = h(42) = -0.033203125000
h(29) = h(41) = -0.082031250000
h(30) = h(40) = -0.088867187500
h(31) = h(39) = -0.026855468750
h(32) = h(38) = 0.099121093750
h(33) = h(37) = 0.253417968750
h(34) = h(36) = 0.379394531250

h(35) = 0.428222656250

6. CONCLUSION

The proposed variable-rate digital filtering system is hardware-
efficient and the proposed coefficient design method provides a
way to determine the PSF coefficients such that the cascade of the
PSF and CIC filter produces the desired frequency response. The
coefficient design algorithm works for all values ofL, M , P , N ,
and�, and it produces a filter response that is close to the target
response. The cascade of the modulator and demodulator filters
produces an overall response that is close to a Nyquist-filter re-
sponse with an acceptable amount of ISI for modern fixed-point
digital communication systems. It is noted that the coefficient de-
sign method can be adapted to design the PSF when it is located
in the demodulator and that the result is identical if the number
of points in the frequency grid of (10) is consistent throughout the
system of Fig. 1. It is also noted that mixed integer linear program-
ming [9] can be used to determine the quantized coefficients of the
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Fig. 7. Passband ripple for (a) the cascade of the PSF and CIC
filter and (b) the target square-root Nyquist filter normalized
with respect to the high sampling rateFs = 1.

PSF instead of linear programming followed by a bivariate local
search.
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