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ABSTRACT

Conditions for Global Asymptotic Stability (GAS) of
a nonlinear relaxation equation realised by a Nonlin-
ear Autoregressive Moving Average (NARMA) recur-
rent perceptron are provided. Convergence is derived
through Fixed Point Iteration (FPI) techniques, based
upon a contraction mapping feature of a nonlinear ac-
tivation function of a neuron. Furthermore, nesting is
shown to be a spatial interpretation of an FPI, which
underpins a recently proposed Pipelined Recurrent Neu-
ral Network (PRNN) for nonlinear signal processing.

1. INTRODUCTION

Global Asymptotic Stability (GAS) and robust GAS
have been widely considered in the context of linear sys-
tems. Recently, the problem of GAS and robust GAS
of a time{variantm{th order linear di�erence equation

y(k) = aT (k)y(k � 1)

= a1(k)y(k � 1) + � � �+ am(k)y(k �m) (1)

has been extensively investigated [1, 2]. Equation (1) is,
in fact, a relaxation equation, which represents an au-
tonomous system, which under certain conditions con-
verges [1]. Equation (1) stems from a general Autore-
gressive Moving Average (ARMA) linear system equa-
tion

Y(k + 1) = A(k)Y(k) +B(k)u(k) (2)

for the case of a zero exogenous input vector u(k) =
0; 8k [3]. It is, in fact, an iterative processing tech-
nique, which runs on �xed (zero) external data applied
to the system. The GAS analysis for the linear system
(1) is naturally based entirely upon the values of the
parameter vector a(k), and is shown to converge for
k a(n) k1< 1 [1].
When it comes to the corresponding general Nonlinear
Autoregressive Moving Average (NARMA) equation,

the NARMA(p,q) system is given by [4]

x(k) = e(k) + h (x(k � 1); � � � ; x(k � p);

e(k � 1); � � � ; e(k � q)) (3)

where p denotes the order of the Autoregressive (AR)
part, q denotes the order of the Moving Average (MA)
part, with some nonlinear function h(�); the GAS anal-
ysis of the relaxation of (3) is still in its infancy. Here,
we provide the conditions of convergence of (3) when
realised by a NARMA recurrent perceptron, and show
that based upon nesting, a Pipelined Recurrent Neural
Network (PRNN) represents a spatial realisation of an
iterative, relaxive procedure based on (3).

2. NARMA RECURRENT NEURAL
NETWORKS

A number of stochastic signal models have been devel-
oped so as the estimate x̂(k) � E (x(k)) in (3) exhibits
certain behaviour. Since the innovation process fe(k)g
is not observable, the residual ê(k) = x(k) � x̂(k), is
an approximation which can be used instead of e(k)
in (3). The NARMA scheme from (3), can be further
approximated as [5]

y(k) = x̂(k) = h(x(k � 1); � � � ; x(k� p);

ê(k � 1); � � � ; ê(k � q))

= H(x(k � 1); � � � ; x(k � p);

y(k � 1); � � � ; y(k � q)) (4)

where H is some new, nonlinear smooth function. The
last equation in (4) is now suitable for the RNN im-
plementation, with H becoming an activation function
of the neuron, which is typically the logistic function
denoted by

�(v) =
1

1 + e��v
(5)

and will be assumed in (4). The structure to realise (3)
by a recurrent perceptron is shown in Figure 1. The
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the weights which correspond to the external input
signals are not time{variant. Since the condition for
convergence of the logistic function to a �xed point is
0 < � < 4, it follows that the slope in the logistic func-
tion � and the weights w1(k); : : : ; wq(k) in the weight
vectorW(k) are not independent and that the e�ective
slope in the logistic function now becomes the product
� �

Pp

j=1wj(k). Therefore

j� �

qX
j=1

wj(k)j � �

qX
j=1

jwj(k)j < 4 (12)

is the condition of GAS convergence of (3) realised
through a recurrent NARMA perceptron. QED
A comparison of the nonlinear GAS result (12) with
its linear counterpart shows that they are both based
upon the k � k1 norm of the appropriate coe�cient vec-
tor. In the nonlinear case, however, the measure of
nonlinearity is also included.

Corollary 1 In the case of the realisation of (3) by
a NARMA recurrent perceptron, convergence towards a
point in the FPI sense does not depend on the number
of external input signals (i.e. p{the AR part of the
NARMA(p,q) process (4)), nor on their values, as long
as they are �nite.

Corollary 2 The FPI convergence for a NARMA(p,q)
recurrent perceptron of order q lasts a least q steps
longer than for a recurrent perceptron with q = 1.

4.1. Convergence Rate of the FPI

Convergence rate is the ratio between the distances be-
tween the current and previous iterate of an FPI and

a �xed point y�, i.e. as y(k)�y�

y(k�1)�y� . This reveals how

quickly an FPI process converges towards a point.

Corollary 3 A realisation of an iterative process (9)
by a recurrent perceptron converges towards a �xed point
y� exhibiting linear convergence with convergence rate
�0(y�).

5. NESTING IN THE RNN FRAMEWORK

Nesting corresponds to the procedure of reducing the
interval size in set theory. However, in signal process-
ing, nesting is essentially a nonlinear spatial structure
which corresponds to the cascaded structure in linear
signal processing [7, 8]. The RNN based nested sigmoid
scheme can be written as [9]

F (W;X) = �

0
@X

n

wn�(
X
i

vi�(� � ��(
X
j

ujXj) � � �))

1
A

(13)

where � is a sigmoidal function. This corresponds to a
multilayer network of units that sum their inputs with
\weights" W = fwn; vi; � � � ; uj; � � �g and then perform
a sigmoidal transformation of this sum. This scheme
is uncommon in classical theory of approximation of
continous functions. Let us now, for the sake of clarity,
consider a recurrent perceptron with only one feedback
output signal (q = 1).

Theorem 2 The nested function

y(k + 1) = � (y(k)) =

= � (�(y(k � 1))) =

= � (�(�(� � � (�(y(1))) � � �) (14)

provides a contraction mapping which converges towards
a point y� in the FPI sense.

Proof:
Notice that the nesting process (14) represents an im-
plicitly written �xed point iteration process

y(k + 1) = �(y(k)), y(k + 1) = � (�(y(k � 1))) =

= � (�(�(� � � (�(y(1))) � � �) (15)

Hence, nesting provides a �nite{length �xed point it-
eration. Hence, it is expected that a nested struc-
ture with m stages (14), converges towards a point
y� 2 [j�0(y�)jma; j�0(y�)jmb], for the initial values in
the interval [a; b] 2 R. For m small, the �xed point
iteration achieved through a nesting process (14) may
not reach its �xed point. QED
The same analogy between the spatial nesting and tem-
poral FPI holds for a general NARMA(p,q) network.
The FPI convergence towards a point is shown in Ex-
ample 1 in Section 7.

6. PRNN AS A REALISATION OF
NESTING

The realisation of process (14) is the so{called Pipelined
Recurrent Neural Network (PRNN) [7], given in Figure
3, which provides a spatial form of the iteration (9).
The PRNN consists of a number of small{scale RNNs,
which are nested, and share the same weight matrix,
and a number of external input signals [7]. Therefore,
instead of having a temporal FPI on a recurrent percep-
tron (Figure 1), it su�ces, for a �nite{length FPI, to
consider a PRNN spatial structure. As the rate of GAS
convergence for a recurrent perceptron does not depend
on the number of external input signals (Corollary 1),
and the convergence of the NARMA(p,q) network lasts
at least q steps longer than for a NARMA(p,1) network
(Corollary 2), it is desirable to choose a recurrent per-
ceptron with q = 1 as a module in the PRNN.
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Figure 3: Pipelined Recurrent Neural Network

7. EXAMPLE

We support our analysis by a simple example with a
NARMA(p,1) recurrent perceptron. For the sake of
clarity, all the constant parameters are embodied in
the unity{valued constant.

Example 1 Show that the iteration

y(k) = �(y(k � 1)) =
1

1 + e�y(k�1)+1
(16)

with initial values y0 = 10 and y0 = 10 converges to-
wards a point y� 2 [�10; 10].

The numerical values for iteration (16) are given in
Table 1. Indeed, the iterates from either starting point

Table 1: Fixed point iterates for the NARMA percep-
tron

Starting value y0 -10 10

First iterate 0.0000 0.9999
Second iterate 0.2689 0.5000
Third iterate 0.3250 0.3775
Fourth iterate 0.3374 0.3492
Fifth iterate 0.3401 0.3428
Sixth iterate 0.3408 0.3414
Seventh iterate 0.3409 0.3410

converge to a value y� 2 [0:3409; 0:3410]2 [�10; 10]. It
can be shown that after 22 iterations for y0 = �10 and
24 iterations for y0 = 10, the �xed point to which the
FPI (16) converges is y� = 0:34095393159261.

8. SUMMARY

Global Asymptotic Stability (GAS) for a class of non-
linear relaxive systems realised by a Nonlinear Autore-
gressive Moving Average (NARMA) recurrent percep-
tron has been studied. Based upon the Fixed Point It-
eration (FPI) technique, it has been shown that these

conditions rest entirely upon the slope of the activation
function �, and a measure of the k � k1 norm of the
weight vector of a recurrent perceptron. In that case,
the GAS iteration converges linearly towards an equi-
librium point. Moreover, convergence does not depend
on the number of external input signals to a recurrent
perceptron (the NAR part of NARMA(p,q) network).
Connection between nesting and FPI, which is the ba-
sis of the GAS convergence, has been established, and a
Pipelined Recurrent Neural Network (PRNN) has been
shown to be a spatial realisation of the FPI process, for
a �nite{length FPI. The example provided supports the
analysis.
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