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ABSTRACT

In this paper we present a method for the deterministic
blind identi�cation of single-input multiple-output systems
with unknown model order. The technique, that is applica-
ble to both the FIR and IIR cases, requires only an upper
bound of the model order. It is based on the special kernel
structure of block Toeplitz matrices. When the model or-
der is overestimated, this special structure entails the true
solution to be embedded in the overestimated solution in a
unique shift-chain form. This special shift-chain structure
is then utilized to extract the true solution.

1 INTRODUCTION

Blind identi�cation of single-input multiple-output (SIMO)
systems using second-order statistics only, has received
widespread interest (see [1][7]) since its feasibility was �rst
demonstrated in [8]. These methods can be widely clas-
si�ed as deterministic (ex. [13]) or stochastic (ex. [2])
according to the model they assume for the source or in-
put sequence. Deterministic blind identi�cation methods
possess the �nite-sample convergence (FSC) property that
provides exact estimation with a �nite set of data samples,
in the absence of noise. Stochastic methods do not exhibit
this property. The FSC property is important in situations
when the channel is changing rapidly and can be assumed
to be stationary only over a short period of time, or when
only short records of data are available for the estimation.
However, deterministic methods usually require exact prior
knowledge of the model order. In situations when this in-
formation is not available an estimate of the model order
needs to be computed �rst from the available data. The so-
lutions provided by deterministic methods have been found
to be extremely sensitive to the model order. Hence, the
use of the model order estimated from a short record of
data is unreliable. In contrast, stochastic method require,
if at all, only an upper bound of the model order. Though
the exact model order might be unknown (or time-varying)
in a practical setting, an upper bound on the model or-
der might be known or readily obtained. For example, in
a wireless channel, where the dominant cause of intersym-
bol interference is multipath, the maximum multipath time
delay for a variety of scenarios can be estimated by mea-
surements. This would then provide an upper bound on the
FIR channel model order. An additional disadvantage asso-
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ciated with deterministic methods is that they are usually
formulated for block implementation. Stochastic methods,
on the other hand, are amenable to e�cient adaptive and
recursive implementations.

A deterministic method that requires only an estimate
on the upper bound of the model order was proposed quite
recently in [9][11][14]. By exploiting the isomorphic rela-
tion between the channel input and output subspaces, it is
shown that the channel order and channel impulse response
are uniquely determined by a �nite least squares smoothing
error sequence in the absence of noise. This least squares
smoothing (LSS) approach is, moreover, amenable to re-
cursive implementation. Hence, the LSS technique was the
�rst to demonstrate that the major advantages of stochas-
tic methods could be o�ered without compromising the FSC
property inherent in a deterministic formulation.

In this paper, we will present another deterministic tech-
nique that combines the major advantages of stochastic and
deterministic methods and requires only an estimate of the
upper bound of the model order. Speci�cally we show that
when the model order is overestimated under the determin-
istic least squares (LS) framework proposed for FIR [13]
and pole-zero systems [12], the overestimated LS solution
still embeds the true solution in a unique shift-chain form.
This is a direct outcome of the null space structure of block
Toeplitz matrices. Hence, once the overestimated solution
has been obtained, the special shift-chain structure can be
utilized to extract the true solution. Therefore, the pro-
posed method, like the LSS method, is a two-step method.
The second step of the LSS method and the method pro-
posed in this paper are identical and involve the estimation
of the channel parameters from a certain structured sub-
space that contains the true solution in a shift-chain form.
The LSS method and the method proposed in this paper
are the only two methods that can provide �nite-sample
convergence with only the upper bound of the model order.

This paper is organized as follows. In Section 2 we present
the special kernel structure exhibited by Toeplitz and block
Toeplitz matrices. In Section 3 we introduce the determin-
istic LP problem for the multichannel case and show how
the extraneous zeros of the multichannel LP �lter can be
separated out by using the special shift-chain structure of
the block Toeplitz matrix kernel. We then formulate the
blind identi�cation problem as a deterministic LP problem
in Section 4 and show the applicability of the above two
results for the case when the model order is unknown. Sim-
ulation results based on the proposed method is presented
in Section 5.



2 KERNEL STRUCTURE OF BLOCK
TOEPLITZ MATRICES

In this section we present the special structure exhibited by
the kernel of Toeplitz and block Toeplitz matrices. Detailed
treatment of the same can be found in [3].
Let Y be a N � M (N > M) Toeplitz matrix. The

kernel of Y can be shown to be the linear hull of a shift-
chain. This concept can be expressed compactly using poly-
nomials by utilizing the isomorphism between the space
of vectors of dimension M and the space of polynomials
of order less than or equal to M . It can be shown that
the the kernel of Y fv 2 RM : Yv = 0g is spanned by
fa(z); za(z); :::; zM�Q�1a(z)g, where `z' is the shift opera-
tor and Q is the order of the polynomial a(z) [3]. That is,
the kernel is spanned by,

E =

0
BBBBBBBBBBBB@

a(0) 0 0

a(1) a(0)
...

... a(1) 0

a(Q)
... � � � a(0)

0 a(Q) a(1)
... 0

...

0
... a(Q)

1
CCCCCCCCCCCCA

: (1)

This polynomial a(z) is unique up to a scale factor. In
this context it should be noted that when the number of
columns M of the matrix Y is chosen to be Q, the nullity
is one. Then the kernel is described by a unique vector
characterized by a(z). We will refer to this as the true
solution.
The above result extends naturally to the case of block

Toeplitz matrices [3]. Let y = fy(0);y(1); :::;y(N+M�2)g
be an N+M�1 point vector sequence where y(i)'s are 1�L
vectors. Let,

Y = TM (y) =

0
BB@

yM�1 yM�2 � � � y0
yM yM�1 � � � y1
...

...
...

...
yN+M�2 yN+M�3 � � � yN�1

1
CCA
(2)

be a block Toeplitz matrix. If N > ML it can be shown
that now the kernel of Y fv 2 RML : Yv = 0g is spanned

by fa(z); zLa(z); :::; zL(M�Q�1)a(z)g, where Q is the order
of the L� 1 vector polynomial a(z) [3].
Summarizing, we can say that if the solution of a set

of unknowns is governed by a homogeneous Toeplitz or a
block Toeplitz system of equations of the form Ya = 0,
then, even if the model order is overestimated, the true
solution is still contained in the kernel subspace in a unique
shift-chain form as given above.

3 IDENTIFYING EXTRANEOUS ZEROS IN A
DETERMINISTIC LP FORMULATION

Consider the homogeneous Toeplitz system of equations
Yv = 0 discussed in the previous section. Note that this is
a linear prediction formulation of an observed set of data.
This deterministic LP formulation has been used for esti-
mating the parameters of a class of pole-zero models [5]
for the single channel (or the Toeplitz) case. The unknown

LP �lter coe�cients a embedded in v provides complete
information on the poles. In the method presented in [5]
a singular value decomposition followed by an examination
of the singular values provided an estimate of the unknown
model order. There the estimation of the exact model or-
der was not critical. This is because the extraneous zeros
of the linear prediction �lter, that is, the extra zeros intro-
duced into the problem due to overestimation of the model
order, can be shown to lie approximately uniformly in a
circle within the unit circle [6]. This property of the ex-
traneous zeros is independent of the underlying data if the
prediction �lter coe�cients are chosen to have minimum
Euclidean length. Using the above property and conjugate
reciprocal root locations of forward and backward data ma-
trices the extraneous zeros can be easily eliminated. Note
that these properties hold good only for the single chan-
nel (Toeplitz) case. For the case of multiple channels (or
the block Toeplitz case), there exists no relation between
the root locations for the forward and backward data ma-
trices [4]. Also, the extraneous zeros are not guaranteed
to fall within the unit circle. Hence, the separation of the
extraneous zeros of the LP �lter from the true zeros in the
multichannel case does not appear to be straightforward.
However, the kernel structure of block Toeplitz matrices as
described in the previous section provides a simple alterna-
tive procedure.
Consider a N �MQ block Toeplitz data matrix Y rep-

resenting a deterministic LP formulation of an M-channel
system such that Ya = 0. The unknownMQ�1 coe�cient
vector a is the true solution and lies in the null space of Y.
Note that Q is the true model order and the matrix Y is
of nullity one. Now let R > Q be the overestimated order
of the system. The new block Toeplitz matrix ~Y of size
(N � R + Q) � MR generated using the same data is of

nullity R�Q+1. The kernel structure of ~Y is a shift-chain
containing the true solution a. Assume now that the true
model order is unknown, i.e., Q is unknown. Let

T =
�
D j E

�
(3)

whereD and E are matrices that contain a basis for the row
and null spaces of ~Y respectively. After T is computed from
the data matrix ~Y using singular value decomposition, D
and E may be obtained from T by suitable thresholding of
the singular values. This has been found to be unreliable at
medium and lower level SNRs. But noting that the kernel
structure is identical to the error subspace obtained via a
data projection operation in the LSS approach, we can use
the second step outlined therein to overcome the above dif-
�culty. The LSS technique uses a minimum equation error
criterion to reliably estimate the nullity [9][11].
Let di be the columns of D. This implies that di

TE = 0.
Due to the structure of E, as given in Section 2, we can write
this as a set of linear equations in terms of the unknown aq
for a given order q as [9][11],0

B@
D0

D1

� � �
DMR�(R�q)

1
CA aq (4)

where Di = Tq(di). It is straightforward to see that in the
noisefree case the equation error in (4) is zero only when the
estimated order is equal to the true order of the system, i.e.,



q = Q 1. This is because when the model order is underes-
timated there are insu�cient degrees of freedom to specify
all the roots de�ning the null space. When the model order
is overestimated, vectors that lie in the null space are incor-
porated into the row space and leads to an inconsistency in
the equations in (4) (see [10]). In the case of perturbation in
the estimated right singular space due to additive noise in
the observations, the above set of equations can be solved in
the LS sense. Hence, the computation of the equation error
for various model orders and picking the model order that
yields the minimum equation error provides a mechanism
for estimating the true model order of the system. These
estimates are usually more reliable than estimates obtained
directly from the singular values at lower SNRs especially
when the system response has small head and tail coe�-
cients [11].
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Figure 1. Magnitude of Estimated Channel Re-
sponses - Proposed Method
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Figure 2. MSE in estimating input sequence

4 DETERMINISTIC LP FORMULATION OF
THE BLIND IDENTIFICATION PROBLEM

It was shown in Section 2 that the solution to the overes-
timated block Toeplitz model contains the true solution in
a unique shift-chain fashion. In Section 3 we provided a
minimum equation error criterion to identify the extrane-
ous zeros in an overestimated deterministic LP formulation
for the multichannel case using the special kernel structure

1When this is true, the solution aq is equal to a, the true

solution of the system.

presented in Section 2. Since the LS blind identi�cation
technique for both the FIR and pole-zero cases involves
the solution of a block Toeplitz system of equations and
is equivalent to a deterministic LP formulation, the results
of the previous two sections can be applied to combat the
problem of unknown model order. Hence, in cases when
the model order is not known a priori and the model is
overestimated to prevent any loss of information, the ker-
nel structure property of block Toeplitz matrices can be
used to \discard the extraneous zeros" and obtain the true
solution.
We will illustrate the procedure using a two-channel FIR

system for simplicity. The procedure can be extended in a
straightforward way to the general case of M channels. Let
x0 and x1 be the output data collected at each channel.
Then the LS solution for the unknown channel responses
b0 and b1 of model order Q is given by [13],

�
TQ(x1) �TQ(x0)

�� b0
b1

�
= 0 (5)

where TQ(:) is the scalar version of the block Toeplitz
form de�ned in (2). In general, when only an estimate

of the upper bound of the model order ~Q is available,
the coe�cient matrix for the equation set is given by
X =

�
T ~Q(x1) �T ~Q(x0)

�
. Note that this matrix can be

transformed to block Toeplitz form by suitable rearrange-
ment of the columns. This results in a corresponding re-
ordering of the elements of the kernel vectors. Using the
results in Section 2 it is straightforward to show that the
kernel of the above X matrix is given by,

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

b0(0) 0 0

b0(1) b0(0)
...

... b0(1) 0

b0(Q� 1)
... � � � b0(0)

0 b0(Q� 1) b0(1)
... 0

...

0
... b0(Q� 1)

b1(0) 0 0

b1(1) b1(0)
...

... b1(1) 0

b1(Q� 1)
... � � � b1(0)

0 b1(Q� 1) b1(1)
... 0

...

0
... b1(Q� 1)

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(6)

where b0 and b1 are the solutions for the two channels.
Hence, the kernel vectors can be used to extract the true
solution. Now we mentioned earlier that small deviations
in model order have been known to lead to large deviations
in the LS solution. This is because, until now the minimum
eigenvector of the matrix XTX has been accepted as the
LS solution. It is obvious from (6) that this solution is not

the true solution unless ~Q = Q. Once, the right singular



space of the overestimated model order data matrix X =�
T ~Q(x1) �T ~Q(x0)

�
has been computed, the minimum

equation error criterion method outlined in Section 3 can
be used to solve for the true channel parameters.
We summarize the procedure as follows :

Step 1: Choose ~Q > Q, where Q is the unknown
true model of the system.

Step 2: Form the data matrix X using the overesti-
mated order ~Q as given in [13][12].

Step 3: Compute the SVD ofX to obtain an orthog-
onal basis for the right singular space.

Step 4: Solve for the true channel parameters using
the minimum equation criterion procedure out-
lined in Section 3.

Once the channel parameters have been estimated, the in-
put sequence can be computed by equalizing the channel.
The two-step procedure outlined above can be extended in
a straightforward way to any number of channels. Note that
a deterministic method proposed recently in [12] for pole-
zero systems uses a block Toeplitz set of equations. Hence,
the proposed procedure can also be applied to the pole-zero
case.
The e�cient implementation of the proposed method

needs to be studied. But we wish to note here that given the
Toeplitz structure of the matrix, the singular space can be
updated recursively with every incoming data sample. This
is followed by the second step of the LSS method which can
also be e�ciently implemented [10][11].

5 SIMULATIONS

Consider a two-channel SIMO FIR system. The true model
order (unknown a priori) was Q = 5 and N = 100 obser-
vation points were available per channel. An upper bound
for the model order R = 9 was used. Figure 1 shows the
superimposed channel frequency response estimates for 20
realizations of additive noise at an SNR of 20 dB. The fre-
quency responses of the two channels are concatenated and
plotted. The x-axis 0 to 1 corresponds to the response of
the �rst channel and 1 to 2 corresponds to the response
of the second channel. Note that the estimates are quite
reliable.
Now we compare the mean squared error (MSE) in esti-

mating the input sequence using the LS technique proposed
in this paper and the LS smoothing (LSS) technique. The
MSE at various SNRs is plotted in Figure 2. The LS tech-
nique does slightly better than the LSS approach for this
speci�c situation. The MSE in estimation for a stochas-
tic method, the LP method [2], is also shown. Note that
the MSE \oors-o�" at higher SNRs. This is because the
LP method being a stochastic method, does not exhibit the
FSC property.

6 CONCLUSIONS

In this paper we have presented a technique for the deter-
ministic blind identi�cation of SIMO systems with unknown
model order. Under an equivalent multichannel determin-
istic LP formulation we have shown that the problem of
�nding the true solution when the model order is overes-
timated becomes equivalent to discarding the extraneous
zeros of the estimated multichannel LP �lter. This is ac-
complished by utilizing the special shift-chain structure of

the kernel of block Toeplitz matrices. The two-step method
involves, �rst, the estimation of the right singular space of a
block Toeplitz matrix followed by a joint estimation of the
true solution and the model order. The second step is iden-
tical to that of the LS smoothing approach. The proposed
procedure can be applied to both FIR and IIR systems.
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