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ABSTRACT

In many applications, one needs to approximate a filter of very
high order with that of lower order. To reduce the order of the fil-
ter, some techniques such as balanced model reduction approach
are often applied. In this paper, we will introduce a new technique
which is based on minimizing theH2-norm between the filter of
very high order and the reduced one. This technique shows much
better performance than other existing model reduction methods
and is applied to estimating the vocal tract filter for speech process-
ing systems. A speech processing example is presented to demon-
strate the design procedure and the performance of the proposed
algorithm.

1. INTRODUCTION

In parametric approach to speech analysis/synthesis, speech sig-
nals are usually modeled as the output of a filter, called vocal tract
filter, excited by a certain input. This filter is traditionally given
by a transfer function of all-pole [1]. The main advantage of using
all-pole filter is that the corresponding filter parameters can be ob-
tained easily. To have a very accurate modeling of the vocal tract, a
more general pole-zero filter has to be used. In fact, the mechanism
of speech production suggests that the vocal tract be modeled with
a pole-zero transfer function (see, e.g., [2]). The main reason why
the general pole-zero filter has not been popularly used in vocal
tract modeling is due to the difficulty in estimating its parameters
with the only available original speech signal.

In this paper, we present a new method for estimation the param-
eters of the pole-zero vocal tract filter. The basic idea is first to
model the vocal tract with an all-pole filter of very high order, then
to convert it into a pole-zero filter of very low order using one of
the model reduction techniques. By doing so, high quality syn-
thetic speech can be achieved with very low bit rate coding. The
main objective in this paper is to develop a new efficient model re-
duction technique for estimating the vocal tract filter of pole-zero
type.

Model/filter reduction has been an important research topic during
the past few decades and there has been a well-developed theoret-
ical foundation for this problem under a variety of approximation
criteria, for example, the Balanced truncation technique(BT) [3]
[4], Hankel-norm approximation approach [5], Impulse response
gramin(IRG) [6] and Covariance equivalent reduction methods [8]
[9]. The well known effective balanced truncation technique is
widely used both in model reduction and filter reduction [10] [11]

[3]. The basic idea of this technique is to find a similarity transfor-
mation and identify the weak modes of the system which have rel-
atively little affect on the system and then truncate them. Recently,
this technique has been used in approximating an linear phase FIR
filter by an IIR one [6] [7]. In this paper, we will introduce the
gradient flow(GF) approach into the filter reduction for the speech
signal production system. This is an optimality-based approach
and the primary principle is to minimizeH2-norm of the discrep-
ancy between the original filter and the reduced one [12]. We will
develop both continuous and iterative algorithms and prove the
convergence of them. Here, we represent the filters in state-space
forms and treat the minimization problem over a subclass of stable
reduced-order filters parameterized by a projection matrix instead
of the whole class of all the reduced-order filters. The restriction
to this subclass enables us to avoid the stability constraint entirely
and leads to a tractable minimization problem over the compact
Stiefel manifold. In addition, the local minimum is guaranteed to
exist over the subclass. A practical example is implemented to
demonstrate the effectiveness of the proposed technique.

2. PROBLEM FORMULATION

A time-invariable linear digital filter, say the all-pole vocal tract
filter of high order obtained with a lattice estimator, can be repre-
sented by a state-space realization:

x(k+ 1) = Ax(k) +Bu(k) (2.1)

y(k) = Cx(k) (2.2)

wherex(k) 2 Rn is the state,y(k) 2 Rq is the output,u(k) 2 Rp

is the input.A,B, C are of suitable dimensions.

A reduced order filter is given (saym-th order withm < n):

xm(k + 1) = Amxm(k) +Bmy(k) (2.3)

ym(k) = Cmxm(k) (2.4)

whereAm 2 Rm�m,Bm 2 Rm�q ,Cm 2 Rp�m. The mismatch
between the full-orderG(z) and the reduced-orderGm(z) will be
measured by the square ofH2 norm of their differenceGe(z), i.e.,

kGe(z)k
2
2 = kG(z)�Gm(z)k22 (2.5)

which is often termed as the quadratic model-reduction cost.

Note that one state-space realization(Ae ; Be ; Ce) of the error
modelGe(z) is given by

(Ae; Be; Ce)=

��
A 0
0 Am

�
;

�
B

Bm

�
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C �Cm

��
(2.6)



Then it is a standard fact that the cost can be conveniently ex-
pressed in terms of the controllability GramianP and observabil-
ity GramianQ of this realization. Namely, there holds

kGe(z)k
2
2 = J(Am; Bm; Cm) = tr(CePC

T
e ) = tr(BT

e QBe)
(2.7)

whereP andQ satisfy

AePA
T
e � P +BeB

T
e = 0 (2.8)

A
T
e QAe �Q+ C

T
e Ce = 0 (2.9)

It has been proven that any minimizing solution(Am; Bm; Cm)
must be of the form [13]

(Am; Bm; Cm) = (TAV; TB;CV ) (2.10)

whereV 2 Rn�m andT 2 Rm�n satisfyTV = I.

Hence, the original filter reduction problem amounts to minimiz-
ing J(TAV; TB;CV ) with respect to(T; V ) 2 Rm�n �Rn�m

subject to the two constraints

(i)TV = I (ii)TAV is stable (2.11)

To make this reduction problem more tractable, it has been proven
in [14] that the above problem can be modified as the following
minimization problem over a much smaller set:

(Am; Bm; Cm) = f(UT
AU;U

T
B;CU)jU 2 St(m;n)g

(2.12)

whereUTAU is stable andSt(m;n) is the so-called Stiefel man-
ifold defined by

St(m;n) = fU 2 R
n�mjUT

U = Ig (2.13)

Hence, we have:

J(Am; Bm; Cm) = J(U) = J(UT
AU;U

T
B;CU) (2.14)

The minimization over the latter smaller model set will lead to a
local minimum more quickly and the associated computation will
be less expensive.

3. GRADIENT FLOW TECHNIQUE

It is clearly known from Section 2 that our filter reduction objective
is formulated to find a transformation matrixU such that the cost
J(U) is minimized. To make a more explicit formula forJ(U),
we partition the solutionsP andQ of the Lyapunov equation (2.8)-
(2.9) as

P =

�
P11 P12
P T
12 P22

�
and Q =

�
Q11 Q12

QT
12 Q22

�
(3.1)

As a result, the lyapunov equations (2.8)-(2.9) become equivalent
to

AP11A
T � P11 +BB

T = 0 (3.2)

AP12U
T
A
T
U � P12 +BB

T
U = 0 (3.3)
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and the costJ(U) can be rewritten as

J(U) = tr[CT
C(P11 + UP22U

T � 2P12U
T )]

= tr[BBT (Q11 + UQ22U
T + 2Q12U

T )] (3.8)

Lemma 3.1. If P and Q satisfy

EPF
T � P +X = 0 and E

T
QF �Q+ Y = 0 (3.9)

then there holds

tr(Y T
P ) = tr(XT

Q) (3.10)

Consider the symmetric characteristic ofRT (U)U , we can form
the gradient of the costJ(U) as following theorem.

Theorem 3.1. : For anyU 2 St(m;n), the gradient ofJ(U) on
St(m;n) is given by

5J(U) = (I � UU
T )RT (U)

where

R
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From Theorem 3.1, it is clear that the necessary conditions for the
minimality of J(U) in St(m;n) are

(I � UU
T )RT (U) = 0 and UT

U = I (3.12)

Solving the above equation is a difficult problem because there
may exist multiple solutions and the derived solution may be a
maximum one. Alternatively, we form a gradient flow as follows:

_U = �5 J(U) = (UUT � I)RT (U) (3.13)

for solving the optimization problem. To be feasible, the optimiza-
tion must ensure that the solutionU of (3.13) exists and moreover
remains in theSt(m;n) manifold. Indeed, the following theorem
provides a positive answer. The proof can be derived similarly as
in [12]

Theorem 3.2. : Let the initial value of the ODE(3.13) be given by
U(0) = U0 2 St(m;n). Then, we have the following results
(1) The ODE has a unique solutionU(t) defined for allt � 0;
(2) The solutionU(t) stays inSt(m;n) for all t � 0;
(3) The costJ(U) is non-increasing alongU(t) with
J(U(t2)) � J(U(t1)) = �2

R t2
t1
k(I � UUT )RT k2Fdt where

8t2 � t1 � 0 andk � kF denotes the Frobenius norm;
(4) There holds

lim
t!1

_U(t) = lim
t!1

(UUT
R
T �R

T ) = 0

(5) The solutionU(t) converges to component of the set of critical
points ofJ(U);
(6) There exists a time sequencetk with tk � 0 andlimt!1 tk =
1 such that the corresponding sequenceU(tk) converges to a
critical point ofJ(U).



Although the solution of the ODE (3.13) can lead to a minimum
point of the cost, a recursive algorithm is usually preferred in a
digital environment. Therefore, in the remainder of this section,
we shall see how a special form of the gradient flow can be ex-
ploited to yield a recursive algorithm which automatically iterates
over the Stiefel manifold and should be much easier to implement
with a digital computer.

SinceRT (U)U is symmetric, (3.13) can be rewritten as

_U = UR
T
U �RU

T
U = (URT �RU

T )U (3.14)

The matrix exponentiale(UR
T
�RUT )t is orthogonal for any real

scalart asURT �RUT is skew-symmetric. Hence, the following
iterative form is suggested:

Uk+1 = e
tk(UkR

T

k
�RkU

T

k
)
Uk (3.15)

whereRk is as defined in (3.11) withU replaced byUk andtk is
thek-step size.

Obviously, all the matrices generated by this algorithm from any
startingU0 2 St(m;n) will remain in St(m;n) no matter how
the steptk is chosen. However, it is important to ensure that the
costJ(U) is decreasing by a proper choice oftk. This is specified
in the following theorem.

Theorem 3.3. [12] There exists a constantc such that with the
step-size chosen as0 < tk � c andU0 2 St(m;n),

J(Uk+1) � J(Uk); 8k = 0; 1; 2; � � �

where the equality holds if and only if a critical point ofJ(U) is
reached.

To sum up, the above two algorithms(Continuous and Iterative) are
implemented following the steps below:

1. Obtain the balanced realization(A;B;C) of the higher order
signal model;
2. SetU0 = U(0) = [Ir�r 0r�(n�r)]

T and solve the ODE (3.13)
or update the iterates (3.15) with an appropriate step size;
3. Form the reduced order filter with the obtained finalU from
Step 2 as:(Am; Bm; Cm) = (UTAU;UTB;CU).

4. EXPERIMENT RESULT

Now, we present some experimental results. The data file, called
‘clean’, is standard speech signal obtained from the database of
Sheffield University. The signal presents the utterance ‘Fred can
go, Susan can’t go, and Linda is uncertain’ spoken by a female
with its waveform shown in Figure 1. The sampling frequency is
fs = 20kHz. The duration is3:574sec, that is71480 samples.

Figure 2 shows the original speech signal of 400 samples from
8101 to 8500. This is a typical voiced frame. The all-pole vocal
tract filter of order 30, denoted byG(z), is obtained using a lattice
estimator. This filter is approximated with a pole-zero filter of
order 6 using three different algorithms: GF, BT and IRG.

To compare the reduction results, we check the following two error
indices:

Æ1 = kG(z)�Gm(z)k2; Æ2 =
kh� hrk1
khk1

whereh andhr are the impulse responses of the high order fil-
ter and the reduced-order ones, respectively. The comparisons are
shown in Table 1:

GF BT IRG
Æ1 5.0407 5.0444 16.1653
Æ2 3.9104e-3 3.9230e-3 2.7913e-3

Table 1: Error comparison of existed techniques

Figure 3 and 4 depict the synthetic speech withG(z) andGGF (z)
obtained with GF algorithm, both excited with the same prediction
error signal of the lattice estimator.
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Figure 1: The waveform of the sample speech signal.
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Figure 2: One typical voiced frame of the speech signal.
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Figure 3: The synthetic signal withG(z).

8100 8150 8200 8250 8300 8350 8400 8450 8500
−500

0

500

1000

1500

Time

Am
plitu

de

Figure 4: The synthetic signal withGGF (z).

Clearly,GGF (z) yields almost the same waveform with only 13
parameters whileG(z) requires 30 parameters for implementation.

Furthermore, we consider another typical unvoiced frame with 350
samples from 151 to 500. It is shown in Figure 5.



Once again, the three algorithms are appliced for model reduction.
The corresponding error comparison is shown in Table 2:

GF BT IRG
Æ1 0.1554 0.1606 0.2195
Æ2 9.5603e-3 9.6034e-3 9.7346e-3

Table 2: Error comparison of existed techniques

Figure 6 and Figure 7 are the synthetic frame obtained by a 20th
order all-pole filter and a 5th-order ROF via GF approach.
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Figure 5: One typical unvoiced frame of the speech signal.
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Figure 6: The synthetic signal by the high order filter.
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Figure 7: The synthetic signal by the ROF.

5. CONCLUSION

In this paper, we have developed the so-called gradient flow ap-
proach and applied it to vocal tract filter estimation for speech sig-
nal processing systems. Through a practical speech signal experi-
ment, we found that the reduction result obtained via the gradient
flow approach has better performance comparison with those ob-
tained by other techniques such as BT and IRG.
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