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ABSTRACT
In this paper, we present a method for designing lossless
versions of two-channel FIR filter banks. We demonstrate that
equal length PR FIR filter banks can be decomposed into 2-point
transforms and unequal length into interpolative predictions. The
lossless versions of the filter banks are obtained by replacing
every constituent module by the corresponding lossless version.
This method allows construction of the lossless versions of filter
banks with arbitrary filter length. Lossless versions of several
filter banks are designed and they are found to yield good
performance for lossless image compression.

1. INTRODUCTION

An unified lossless and lossy image coding system is useful for
various applications, since we can reconstruct lossy and lossless
images from a part and the whole of an encoded data,
respectively. This coding system can be realized by using lossless
block transforms or lossless wavelet transforms. In the lossless
transforms, integer input signals are transformed into integer
transform coefficients and losslessly reconstructed. The mean
first order entropy of the integer transform coefficients must be
smaller than that of input for image compression. Lossless
versions of 8-point discrete cosine transform (DCT) and 8-point
Walsh-Hadamard transform (WHT) have been proposed [1][2].
The lossless wavelet transforms consist of lossless versions of
filter banks. A lossless version of the symmetric short kernel
filter (SSKF) [3] has been proposed [4]. Said and Pearlman
proposed the S+P transform (S transform [5] + Prediction) [6].
The TS-transform proposed in [7] is a special case of the S+P
transform.

A method for designing lossless versions of general FIR filter
banks was proposed [8]. This approach is based on the idea of
factoring the filter bank into lifting steps [9]. In this paper, we
will propose a design method of lossless versions of 2-channel
perfect reconstruction (PR) FIR filter banks based on
decomposing them into simpler steps, that is, 2-point transforms
and interpolative predictions, than lifting steps. This method will
allow us to obtain easily lossless versions of filter banks with
arbitrary filter length.

In the following section, lossless versions of a 2-point transform
and an interpolative prediction are introduced. In section 3, we
will propose methods of decomposing PR FIR filter banks into 2-
point transforms or interpolative predictions. Section 4 shows the
design examples of lossless filter banks and their performance in
lossless image compression. Section 5 concludes this paper.

2. CONSTITUENT MODULES

2.1 Lossless Two-point Transform

A 22×  matrix A that has scalars a to d is decomposed as
follows, if Det(A) = 1 and 0≠b .
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The transformation of ],[ 10 xx  to ],[ 10 θθ  by A is then given by
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where bac /)1(0
−= , bc =

1 , bdc /)1(2
−= . The integer

version of (2) is given by
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where 0x , 1x , bθ , 0θ  and 1θ  are integer, and 0c , 1c  and

2c  are real. The equation (3) is reversible, that is to say, ],[ 10 xx

is losslessly reconstructed from ],[ 10 θθ  as
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The corresponding network is shown in Fig. 1(a). This is called a
ladder network [10]. The case of Det(A) = -1 is shown in Fig.
1(b), where A is decomposed as follows.
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For example, we can obtain a normalized lossless 2-point WHT

by setting 2/1=−=== dcba . Unlike the S transform, the
dynamic range is uniform.

2.2 Lossless Interpolative Prediction

The 2-point transform is a constituent module of the (2, 2)-FB,
where (m, n)-FB indicates the 2-channel filter bank with m-tap



and n-tap analysis filters. The (1, 3)-FB is as simple as the (2, 2)-
FB. An integer version of a constituent module of the (1, 3)-FB is
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It is obvious that the input is losslessly reconstructed. We name it
lossless interpolative prediction (LIP). The LIP and its inverse
transform are shown in Fig. 2.

3. DECOMPOSITION OF FILTER BANK

3.1 Decomposition of (2L, 2L)-FB

Here, we demonstrate that perfect reconstruction (2L, 2L)-FBs,
whose delay is 2L-1, can be decomposed into 2-point transforms.
It is known that paraunitary PR filter banks can be decomposed
into lattice modules which are special cases of 2-point transforms
[11]. We show that non-paraunitary PR filter banks can also be
decomposed into 2-point transforms.

The two channel filter bank is shown in Fig. 3. Let's suppose that
every filter length is 2L ( 2≥L ), that is,
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the delay of the filter bank is 2L-1, and
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Then, from theory of filter banks [12], the perfect reconstruction
requirement in time domain is
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for 121 −≤≤ Lm . The following equations are obtained by
setting 1=m  and 12 −= Lm  in (9),
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From (7) and (10), the following equations are obtained.
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where 0s  is an arbitrary constant. Equation (11) means that the

analysis part of the PR (2L, 2L)-FB is decomposed into 2L-2 tap
filters and a 2-point transform 0

A  as shown in Fig. 4, where
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In the synthesis part in Fig. 3,
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Figure 1.  Lossless 2-point transform and its inverse
transform. (a)Case of Det(A)=1. (b)Case of Det(A)= -1.

Figure 2.  Lossless interpolative prediction and its
inverse transform.

Figure 3.  Two-channel analysis/synthesis filter bank.

Figure 4.  One decomposition of (2L, 2L)-FB.
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where n is even. From (8), (10), (11) and (13), the following
equations are derived.
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Equation (11), (12) and (14) mean that the synthesis part is

decomposed into 2L-2 tap filters and a 2-point transform 1

0

−A  as

shown in Fig. 4. The filter bank that consists of )(0 nh′ , )(1 nh′ ,

)(0 ng′  and )(1 ng′  is PR and its delay is 2L-3. Thus, the original

filter bank is decomposed into 2L-layer 2-point transforms as
shown in Fig. 5 by repeating the above decompositions. To
replace every 2-point transform by the corresponding lossless 2-
point transform, we must multiply each matrix by a constant so
that the determinant will become 1 or –1. There is L degrees of
freedom in the decomposition process, that is, 0s , 1s , …, 2−Ls ,

where is  is an arbitrary constant used in iA , and the ratio of

dynamic range of )(0 ny  to that of )(1 ny  in the original filter

bank. These parameters should be determined so that the
performance of the lossless filter bank, for example, lossless
compression efficiency, would become high.

3.2 Decomposition of (2L+1, 2L-1)-FB

Here, we demonstrate that PR (2L+1, 2L-1)-FBs, whose delay is
2L-1, can be decomposed into interpolative predictions. Let's
suppose in Fig. 3 that filter length of )(0 nh  is 2L+1, that of

)(1 nh  is 2L-1 ( 2≥L ), that is,
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the delay of the filter bank is 2L-1, and (8) is satisfied. Then, the
perfect reconstruction requirement in time domain is
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for 121 −≤≤ Lm . The following equations are obtained by
setting 1=m  and 12 −= Lm  in (16),
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From (15) and (17), the following equations are obtained.
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Equation (18) means that the analysis part of this filter bank is
decomposed into a 2L-1 tap filter )(0 nh′ , a 2L-3 tap filter )(1 nh′
and an interpolative prediction as shown in Fig. 6, where

)1(/)1( 100,0 hhc −=  and )32(/)12( 101,0 −−−= LhLhc . We can

derive in the same manner as 3.1 that the synthesis part is
decomposed into a 2L-3 tap filter )(0 ng′ , a 2L-1 tap filter )(1 ng′
and an interpolative prediction as shown in Fig. 6. The filter bank

Figure 5.  Full decompositions of (2L, 2L)-FB.

Figure 7.  Full decompositions of (2L+1, 2L-1)-FB.

Figure 6.  One decomposition of (2L+1, 2L-1)-FB.
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that consists of )(0 nh′ , )(1 nh′ , )(0 ng′  and )(1 ng′  is PR and its

delay is 2L-3. Thus, the original filter bank is decomposed into
2L-layer interpolative predictions and four multipliers as shown
in Fig. 7 by repeating the above decompositions.

We can delete the four multipliers by shifting them through the
interpolative predictions. In this time, the coefficients of the
interpolative predictions will change. Thus, the lossless version
of the (2L+1, 2L-1)-FB can be obtained by replacing every
interpolative prediction by LIP. For example, the lossless version
of (5, 3)-SSKF is given by setting L = 2, 25.01,00,0 −== cc  and

5.01,10,1 == cc  [4].

4. DESIGN EXAMPLES AND LOSSLESS
COMPRESSION EFFICIENCY

The lossless versions of 16-tap CQF [13], 12-tap linear phase
filter [14] and (5, 7)-FB [15] were constructed, where we name
them 16-LCQF, 12-LFB and (5, 7)-LFB, respectively. The
coefficients of LIP and 2-point transforms are shown in Table I.
To evaluate the resulting lossless versions, six USC test images
were used. All of these images are 512512×  and 8bits/pixel
grayscale. For comparison purposes, we also provide the results
obtained with two leading lossless filter banks: (5, 3)-LFB [4]
and TS-transform and the lossless DCT (LDCT) [1]. The lossless
filter banks were used for two-dimensional ten-band octave
decomposition. The mean first order entropy of transformed
images are given in Table II, where the values of PCM are
entropies of input images. It is seen that the performances of new
lossless filter banks are comparable to those of conventional
transforms.

5. CONCLUSIONS

A design method of lossless versions of filter banks has been
proposed. This method is based on decomposing filter banks into
2-point transforms or interpolative predictions. This allows
construction of lossless versions of PR FIR filter banks with
arbitrary filter length. The new lossless filter banks were found to

yield good performance for lossless image compression. It seems
that the decomposition of filter banks is available for not only
lossless coding system, but also adaptive wavelet transform.
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Aerial Airplane Baboon Couple

PCM 6.99 6.80 7.47 7.20

LDCT 5.49 4.54 6.32 4.76

(5,3)-LFB 5.28 4.37 6.33 4.62

TS 5.41 4.50 6.39 4.78

(5,7)-LFB 5.53 4.59 6.43 4.83

12-LFB 5.34 4.49 6.31 4.73

16-LCQF 5.49 4.67 6.36 4.93

Table IIÔ Mean first order entropy of transformed images
(bit/pel).

Lenna

7.59

4.79

4.73

4.79

4.86

4.77

4.85

Peppers

7.49

4.97

4.91

4.95

4.96

4.96

5.07

Table IÔ Coefficients of LIPs in (5, 7)-LFB and 2-point
transforms in 12-LFB and 16-LCQF.

a0 = -1.066016  b0 = 1.066016  c0 = 0.469036  d0 = 0.469036
a1 = 1.010085  b1 = 0.142379  c1 = -0.142379  d1 = -1.010085
a2 = -0.099572  b2 = -1.004945  c2 = 1.004945  d2 = 0.099572
a3 = -1.052956  b3 = -0.329721  c3 = 0.329721  d3 = 1.052956
a4 = -0.310223  b4 = 1.047014  c4 = 1.047014  d4 = -0.310223
a5 = -0.658149  b5 = 1.197147  c5 = 1.197147  d5 = -0.658149

a0 = -0.836680  b0 = 0.547692  c0 = 0.547692  d0 = 0.836680
a1 = 0.919718  b1 = 0.392579  c1 = 0.392579,  d1 = -0.919718
a2 = 0.862876  b2 = -0.505416  c2 = 0.505416  d2 = 0.862876
a3 = -0.514990  b3 = 0.857196  c3 = 0.857196  d3 = 0.514990
a4 = 0.141530  b4 = 0.989934  c4 = 0.989934  d4 = -0.141530
a5 = 0.679310  b5 = 0.733851  c5 = 0.733851  d5 = -0.679310
a6 = 0.946089  b6 = 0.323907  c6 = 0.323907  d6 = -0.946089
a7 = 0.997421  b7 = 0.071776  c7 = 0.071776  d7 = -0.997421
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