
DETECTING MULTIPATH SIGNALS WITH THE MATCHED-LAG FILTER

John L. Spiesberger

512 Walker Bldg., Department of Meteorology, Pennsylvania State University
University Park, Pennsylvania 16802, USA

jspies@ems.psu.edu

ABSTRACT

A detection problem is considered for a single broadband source
of unknown waveform and emission time. The signal travels to the
receiver along multipath with unknown delays and temporal sepa-
ration exceeding the inverse bandwidth of the signal. The received
noise has uncertain variance. The travel times of the multipath
are impractical to predict because of uncertainties in the environ-
ment. The presence or absence of the signal is estimated from the
auto-correlation function. Instead of stochastically modeling the
multipath in terms of their received auto-correlation function, re-
ceivers are constructed which constrain the signal-related lags in
the auto-correlation function to have physically possible arrange-
ments. For simple cases, this approach, called a matched-lag fil-
ter, yields probabilities of detection that are 1.35 times greater
(for a false-alarm probability of 0.001) than conventional filters
which base their decision on the signal-to-noise ratio in the auto-
correlation function.

1. INTRODUCTION

A detection problem is considered where either noise or signal plus
noise is present at a receiver. It is assumed that the emitted signal
travels along two or more paths because of reflections or refraction
within the environment. Assume the transmitted waveform, ampli-
tude, and emission time are unknown, as are the travel times of the
multipath. The lack of information about a library of transmitted
waveform shapes appears to preclude the use of detection methods
based on the matched filter [11] or those discussed for wireless
communication systems [12]. It is assumed that it is impractical
to accurately model the travel times of the multipath because of
insufficient information about the environment. Thus it would not
be possible to used matched field processing [3] or other methods
to model the multipath. Such conditions may occur for the prop-
agation of acoustic or electromagnetic waves on land where the
locations of boundaries such as the ground, trees, rocks, buildings
etc. are often unknown [12, 7], or in shallow water with compli-
cated bathymetry, or with electromagnetic propagation through the
ionosphere [15]. Such conditions may also occur in the Earth when
acoustic signals from earthquakes or nuclear blasts propagate to
receivers along many paths. Further assume that the signal has a
wide bandwidth, so that some multipath arrive at intervals exceed-
ing the inverse bandwidth of the signal. Assume that the variance
of the noise is imperfectly known, either because one does not
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know when the signal is on or off, or because the noise is not sta-
tionary, or because one estimates the variance from the data. This
assumption makes it difficult to use signal detectors which assume
that the variance of the noise is known.

These kinds of signals might be detected with receivers which
base their decision on the received power [14]. This paper dis-
cusses additional techniques for detecting these signals based on
the data from the auto-correlation function. This function pro-
vides the standard gain obtained with a matched filter [11], since
the signals from each multipath are assumed to be attenuated and
delayed replicas of one other. Perhaps the most distinguishing fea-
ture of the receiver discussed here is that it inherently incorpo-
rates only physically possible lags at which the signals occur in
the auto-correlation function. In other words, the lags and am-
plitudes of signal-related peaks are treated deterministically rather
than stochastically. There are examples of the detection of multi-
path which are modeled stochastically, such that the auto-correlation
function of the multipath signals is assumed to be known ahead of
time [15, 4, 17, 10]. This assumption allows multipath signals to
occur at any lags in the auto-correlation function, but indeed there
are many lag arrangements that are unphysical. Take, for example,
three paths arriving at a receiver. There are at most3(3�1)=2 = 3
signal-related peaks at positive lag in the auto-correlation function
[7]. The lags,� , of these peaks must satisfy the lag equations,

� [m;n] = t[m]� t[n] ; n < m ; (1)

[7] where the travel time for pathm is t[m]. The reader may ver-
ify that it is impossible to have signals at lags 2, 4, and 5 where
samples are taken at times having integer values. So detecting the
signals described in the first paragraph can involve more than look-
ing at signal-to-noise ratios. It is shown here how to incorporate
the physically possible lag locations into the design of a receiver
in a deterministic way, and thus increase the probability of detec-
tion compared with receivers which base their decision solely on
signal-to-noise ratios and a stochastic model for the travel times of
the multipath. The receiver developed here which bases its deci-
sion for a signal’s presence on both the signal-to-noise ratio and
physically possible lags in the auto-correlation function is called a
“matched-lag filter.”

In most situations, the auto-correlation function of the emit-
ted signal has an unknown shape. This problem is too difficult to
deal with in an introductory paper dealing with the concept of a
matched-lag filter. Instead, the matched-lag filter will be evaluated
in an ideal situation where it is assumed that the emitted signal has
an auto-correlation function that is like a delta function.



2. LIKLIHOOD RATIO

Under hypothesisH0, the data,r(k), at the receiver consist of
k = 1; 2; 3; � � � ; K mutually uncorrelated Gaussian random vari-
ables,e(k), with mean zero and variance�2. Under hypothesis
H1, the data containN delayed and attenuated replicas of an emit-
ted signal,s(k), plus additive noise,

r(k) =
NX
n=1

a(n)s(k � t(n)) + e(k) ; (2)

where the travel time of thenth path ist(n). Travel time is mea-
sured in units of the sample number at the receiver. The auto-
correlation function for non-negative lags is,

R(p) �
1

K

KX
k=1+p

r(k)r(k � p) ; p � 0 : (3)

2.1. Probability Density Function Under HypothesisH0

UnderH0, it is straightforward to show that auto-correlation func-
tion lags have mean zero, except for lag zero which will not be
used. The lags are also uncorrelated. When there are many terms
in the summation indices of the auto-correlation function, the cor-
relates are also Gaussian because of the central limit theorem [8].
When the lag,p, is small compared with the greatest lag,K � 1,
computed for the correlation function, the variance of the corre-
lates is approximately stationary with value [16],

�20 =
(�2)2

K
: (4)

The joint probability density function (pdf) of the positive lags
in the auto-correlation function is,

f0(~R) = (2��20)
�Q=2 exp

�
�

1

2�20

QX
q=1

R2(q)

�
; (5)

where there areQ positive lags used for the receiver andQ <<
K � 1. The travel time difference between the last significant and
first multipath is assumed to be less than or equal toQ.

2.2. Lag Structure With Multipath

UnderH1, it is assumed for simplicity thatN paths arrive at the
receiver, each with amplitudea in Eq. ( 2). Their arrival intervals
are assumed to be greater than or equal to the sample interval.
Arrival times are assumed to coincide with a sample time. The
emitted signal is assumed to have an auto-correlation function that
is white and its energy is,

E �

KX
k=1

s2(k) ; (6)

ands(k)s(k � p) is zero forp not equal to zero where the overline
denotes an expected value. A resolved signal has a value ofA in
the auto-correlation function where [16],

A =
a2E

K
: (7)

The number of signal-related positive lags,P 0, in the auto-
correlation function is bounded by,

N � 1 � P 0 � P ; (8)

where the maximum number of resolved signals at positive lag is,

P = N(N � 1)=2 ; (9)

[7]. One obtains less thanP resolved signal lags when a signal lag
has two or more pairs of travel time differences which are equal to
each other.

TheP positive lags in the auto-correlation function satisfy the
lag equations where1 � n < m � N in Eq. ( 1). The structure of
signal related lags can be obtained by generating all the possible
arrangements ofN � 1 relative travel times,

t[m]� t[1] ; m = 2; 3; 4; � � �N (10)

amongQ positive lags. There are,

B1 �

�
Q

N � 1

�
; (11)

such arrangements. Thebth arrangement ofN � 1 relative travel
times determines theP 0b positive lags,

 b(p) ; p = 1; 2; 3; � � �P 0b ; (12)

where signals occur. Because there can be contributions from two
or more signals at the same lag, we define the number of signals at
lag b(p) as�b(p), where�b(p) is called the redundancy function.
It is always greater than or equal to one. Thebth lag-redundancy
arrangement is defined to consist of the2P 0b elements in the set
f b(n); �b(n)g ; n = 1; 2; 3; � � � ; P 0b.

Some of theB1 lag-redundancy arrangements may be the same.
For example, the two travel time sets,t 2 f0; 1; 3g and t 2
f0; 2; 3g both yield the same positive auto-correlation function
lags, (n) = 1; 2; and 3, and redundancy functions,�(n) =
1; 2; and1 for n = 1; 2; and3 respectively. In other words, lags
1 and 3 are resolved, and lag 2 has contributions from two signals.
The total number of unique lag-redundancy sets is [16],

�B1 =
B1 �Bs

2
+Bs ; (13)

where,

Bs = 2
N
(Q�N + 2)

�
Q
2

N�2
2

�
; for N andQ even :

(14)

The liklihood ratio for the auto-correlation function lags will re-
quire using the set of unique lag-redundancy arrangements, thebth
of which is denotedf � b(n); ��b(n)g ; n = 1; 2; 3; � � � ; �P 0b.

2.3. Probability Density Function Under HypothesisH1

UnderH1, the variance of the noise in an auto-correlation function
is,

�21 = �20(1 + c1l
2) ; (15)



where the time-averaged signal-to-noise intensity ratio overK sam-
ples at the receiver is,

l2 =
AN

�2
; (16)

and,

c1 � 2

�
1 +

N � 1

4Q

�
; (17)

[16].
The joint pdf of the positive lags in the auto-correlation func-

tion is,

f1(~R) =

�B1X
b=1

f2(~Rj � b)f � b (
� b) ; (18)

where the conditional probability is,

f2(~Rj � b) = (2��21)
�Q=2

exp

�
�1

2�21

�P 0

bX
p=1

�
R( � b(p))� ��b(p)A

�2

�

1

2�21

QX
p= �P 0

b
+1

R2( �	b(p))

�
; (19)

where �	b(p) are the lags where no signals occur at positive lag.
The probability of obtaining a particular arrangement of signal
lags, f3( � b), will be taken to be the one of most ignorance, so
it will be uniformly distributed as,

f � b(
� b) =

1
�B1

: (20)

2.4. Average Liklihood Ratio

It may be difficult to accurately estimate the variance of the noise,
as for example is the case even if one has stationary noise consist-
ing of K uncorrelated samples of a zero mean Gaussian random
variable with true variance�2 = 1. The 95% confidence limits for
the sample standard deviation fromK samples is,

1�
23=2

K1=4
;

which, forK = 1000 is 1 � 0:5 [1]. For this reason, the per-
formance of a receiver will be investigated for the case where the
variance of the noise at the receiver is imperfectly known using an
average liklihood ratio,� = f1=f0, where the expected value is
taken over the uncertainty in the noise [6]. Since the probability of
the data depends on the variance of the noise, hypothesesH0 and
H1 are composite.

Using the Neyman-Pearson criterion, the decision on whether
the data consist only of noise or of signal plus noise is made by
choosing an acceptable probability of false-alarm,Q0, and solving
for a threshold value,�0, in,

Q0 =

Z
1

�0

P0(�)d� : (21)

The probability of detection is given by,

Qd =

Z
1

�0

P1(�)d� ; (22)

where the pdfs of� under hypothesesH0 andH1 areP0(�) and
P1(�) respectively. The results are summarized using a receiver
operating curve[13, 2].

It can be shown that an expression for the average liklihood
ratio for the positive auto-correlation function lags is [16],

�1(~R) =
f1(~Rjy)

f0(~Rjx)
; (23)

where the overline denotes expectation over the uncertainty of the
noise andx andy parameterize the noise uncertainty according to,

x � ��20

y � ��21 ; (24)

and it is assumed thatx and y are uniformly distributed on the
intervals[�x; x̂] and [�y; ŷ] respectively. To complete Eq. ( 23) we
need the average pdf under hypothesisH0,

f0(~Rjx) �

Z x̂

�x

px(x)f0(~Rjx)dx =
px(x)

(2�)Q=2
��(

Q
2
+1)

�


�
Q
2
+ 1; �x̂

�
� 


�
Q
2
+ 1; ��x

��
; (25)

where,

� �
1

2

QX
l=1

R2(l) ; (26)

and the incomplete gamma function [5] is,


(a; b) �

Z b

0

e�tta�1dt : (27)

We also need the average joint pdf of the data underH1,

f1(~Rjy) �

Z ŷ

�y

py(y)f1(~Rjy)dy

=
py(y)

(2�)Q=2
1
�B1

�B1X
b=1

�
�(Q

2
+1)

b

�


�
Q
2
+ 1; �bŷ

�
� 


�
Q
2
+ 1; �b�y

��
; (28)

where,

�b �
1

2

QX
l=1

R2
11(l) +

A2

2

�P 0

bX
p=1

��2b (p)�A

�P 0

bX
p=1

��b(p)R11( � b(p)) :

(29)

2.5. Example

Consider a case where the standard deviation of the noise at the
receiver is known within 50% and consider,

K = 40

Q = 7

10 log10
A2

�21
= 1 dB ; (30)
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Figure 1: Receiver operating curves for the values from Eq. ( 30).
The thick curve is for the matched-lag filter based on the aver-
aged liklihood ratio in Eq. ( 23) which uses only the physically
possible lag-redundancy arrangements. The thin curve is for the
“conventional” receiver which uses unphysical lag-redundancy ar-
rangements.

(thick curve, Fig. 1). All examples in this paper generate receiver
operating curves from 10,000 simulations.

The author has not come across a receiver which bases its
decision for the presence of a signal from the lags of the auto-
correlation function, though such a receiver may have been dis-
cussed. In the absence of the lag equations in Eq. ( 1), we consider
a conventional receiver that bases its decision for the presence of a
signal on the signal-to-noise ratios of the positive lags. Assuming
there areN multipath, the conventional receiver design will take
all P � N(N � 1)=2 signal-related peaks to be resolved among
theQ positive lags. The conventional receiver would allow for all,

Bu �

�
Q

N(N�1)

2

�
: (31)

arrangements of these signals, instead of using only the physically
possible ones given by Eq. ( 13). The subscriptu stands for un-
physical, even though some of theBu arrangements are physical.
The probability of detection for the matched-lag filter exceeds that
for this conventional receiver for all false-alarm probabilities (Fig.
1). For example, for a false-alarm probability of 0.001, the prob-
ability of detection for the matched-lag filter is about 1.35 times
that for the conventional receiver.

3. DISCUSSION

The matched-lag filter was constructed under the assumption that
it is impossible to model the travel times of multipath, leading to
the assumption that the probability of each physically possible lag-
redundancy arrangement is equally likely. In cases where it is pos-
sible to place bounds on the relative travel times of multipath, thea
priori probability density function of the lag-redundancy arrange-
ment could be modified to fit expectations to improve the proba-
bilities of detection [9].

Finally, it should be realized that the matched-lag filter is more
efficient to implement than the conventional type because the num-
ber of physically possible lag-redundancy arrangements is fewer
than the number of unphysical arrangements for most cases.
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