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ABSTRACT

The Gaussian mixture modeling (GMM) techniques are
increasingly being used for both speaker identification and
verification. Most of these models assume diagona
covariance matrices. Although empirically any distribution
can be approximated with a diagona GMM, a large
number of mixture components are usually needed to
obtain a good approximation. A consequence of using a
large GMM s that its training is time consuming and its
response speed is very dow. This paper proposes a
modification to the standard diagonal GMM approach.
The proposed scheme includes an  orthogona
transformation: feature vectors are first transformed to the
space spanned by the eigenvectors of the covariance
metrix before applying to the diagona GMM. Only a
small computational load is introduced by this
transformation, but results from both  speaker
identification and verification experiments indicated that
the orthogonal transformation considerably improves the
recognition performance. For a specific performance level,
the GMM with orthogonal transform needs only one-
fourth the number of Gaussian functions required by the
standard GMM.

1. INTRODUCTION

The Gaussian mixture speaker model has been successfully
used for both speaker identification and verification
[1][2]. The basis of this approach is to represent the
distribution of training vectors from each speaker with a
weighted sum of several multivariate Gaussian functions.
The parameters in the model can be estimated using the
iterative Expectation-Maximization (EM) a gorithm.

In theory each Gaussian function may have a full
covariance matrix. However, the diagonal covariance
matrix has been used almost exclusively in the practice.
Since the inverse of covariance matrices have to be
calculated repeatedly during the EM iteration, using the
diagonal matrices are clearly more advantageous from the
calculation perspective. In addition, if available training
data are very limited, a full covariance matrix is more
likely to be ill-conditioned. In many practical situations,
even the diagona elements (i.e., variances) could become

too small in magnitude. This is particularly true when a
mixture model with alarge number of component densities
is used. To solve this problem, a floor value (minimum
limit) is usually set to the variances[1].

Generally, the elements of feature vectors extracted from a
speech signal are correlated. Even though a linear
combination of diagona covariance Gaussian functions is
capable of modeling the correlation [1], alarge number of
mixtures has to be used in order to provide a good
approximation. A large GMM takes a long time to train,
and is very dow in response. This paper proposes a
modification to the commonly used diagonal GMM (called
standard GMM). The basic idea is that before applying to
the diagonal GMM the feature vectors are first transformed
to the space spanned by the eigenvectors of the covariance
matrix so that the correlation among the elements is
reduced.

2. ORTHOGONAL GAUSSIAN
MIXTURE MODEL

2.1 Description

A Gaussian mixture model is a weighted sum of M
multivariate Gaussian functions
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In most situations, al covariance matrices X, are assumed

to be diagonal. From the linear algebra theory, we know
that a covariance matrix can be diagonalized if the vectors
are linearly transformed to the space spanned by the
eigenvectors of the original covariance matrix.

Suppose the covariance matrix of the current speaker is
>, and the transform matrix Q is composed of the

eigenvectors of X, then after the linear transformation,



y=Q"x, the covariance matrix in the y space, z,,is
diagonal. %, isrelated to Z, according to the following
equation

z,=Q'5,0 ®3)

Since Q" is composed of the eigenvectors of 3, it has

the property that QQT =1 . Replacing X in Eq. (2) with
Qy, we have,
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where 2, and 4,; are defined as,
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Comparing Eqg. (3) and (5), it is easy to see that if thereis
only one Gaussian function (uni-modal Gaussian model),
the diagonal Gaussian function iny space is equivalence to
the Gaussian function with full covariance in the x space.
The uni-modal Gaussian function with a full covariance
has also been shown to be an effective speaker model
[3][4]. Generaly, the GMM has more than one Gaussian
components, therefore, the covariance matrices 2 ; are not

truly diagonal. However, it is more reasonable to assume
that > ; are diagonal dominated than Z,; . In other words,

a diagona GMM in y space would provide a better
approximation to the distribution of feature vectors. We
name the new GMM with orthogona transform as
orthogonal GMM (OGMM).

Figure 1 shows a block diagram of OGMM. The model is
composed of a linear transform matrix and a normal
diagonal GMM. Please note, the transform matrix is
speaker dependent, each model has its own transform
matrix. In fact, this model has exactly the same structure as
that proposed by Yuo et al. [5], but the method for
generating the transform matrix is difference. Yuo et al.
estimated the transform matrix and the diagona GMM
parameters jointly in the EM iteration process. In contrast,
the training in our method is done in two steps. The first
step is the calculation of the orthogonal transform matrix.
Since the covariance matrix is a real symmetric matrix,
there are well developed and efficient methods to find its
eigenvectors.

After obtaining the transform matrix, the second step is to
multiply all training vectors belonging to this model with

the transform matrix. This transformation is done only
once during the training phase. Then the parameters in the
diagonal GMM are estimated with the commonly used EM
algorithm. In the test phase, the test vectors are also
transformed to the new space before they are applied to the
diagonal GMM.
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Figure 1 A block diagram of the OGMM.

2.2 [llustration in Two-dimensional Space

In this section, we give a conceptual interpretation to the
orthogonal transform in the two dimensional space. Figure
2(a) shows the case of representing the data with a
diagond GMM. Each dllipse stands for a Gaussian
component. Since diagonal covariance matrices are used,
the axes of al ellipses are parald to the x- and y-axis.
However, the principle components of the feature vectors
may not be along these directions. If we first turn the
coordinate system according to the distribution direction of
the principle components, it is more likely that a better
approximation to the data distribution can be obtained with
the same number of Gaussian functions.

Standard GMM Orthogonal GMM
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Figure 2 A conceptual illustration of (a) the standard
GMM, and (b) the OGMM.

3. EXPERIMENTS
31 Evaluation Speech

We did both speaker identification and verification
experiments to show the effectiveness of the orthogonal
transform. The speech data were taken from the YOHO
database [6]. A subset of the database including 40
speakers (20 males, 20 females) were used in both



experiments. For the verification experiment, another 20
speakers (10 males, 10 females) from the same database
were selected as impostors. No model was created for the
impostors, only their test data were used.

Feature vectors were extracted with the popular short-time
analysis techniques. The analysis window size was 32 ms
(256 samples) and the advancing step was 16 ms.
Sentences from all enrollment sessions were used for
training. However, silence and unvoiced segments were
discarded based on an energy threshold. Discarding
unvoiced segments will inevitably degrade the overal
performance, but this is not a serious problem because we
only want to compare the relative performance of different
models. There were about 4500 training vectors from each
speaker. A feature vector was composed of 16 MFCC
coefficients. In the identification experiment, individual
phrases from the verification sessions were used as test
sentences. The average length of the test sentences was
about 48 frames (48x16 ms, after removing silence and
unvoiced frames). In the verification experiment, we tested
both cases with a single string as a test sentence and with
four strings as a test sentence.

3.2 Computational Efficiency

Suppose the feature vector dimension is D, and the number
of mixtures in the GMM is M. Then each standard
diagond GMM will have 2DxM+M parameters. An
OGMM needs extra DxD storage for the transform matrix.

Although the OGMM needs extra steps of obtaining the
transform matrix, and then multiplying the training vectors
with the transform matrix, the computational costs of all
these steps are negligible with a modern computer. In fact,
the most time-consuming part during the training phase is
the EM iteration process. Since the OGMM usualy
converges more quickly than the standard GMM, we found
that the OGMM does not need more training time than the
GMM.

In the test phase, the OGMM involves a linear transform
for all test vectors. However, this small calculation
overhead has no noticeable influence on the response
speed. Totally speaking, for the same number of mixtures,
there is no clear difference between OGMM and standard
GMM in terms of both computationa efficiency and
response speed.

Throughout the discussions above, we have assumed that
the same number of Gaussian components are used in the
standard GMM and in the OGMM. As we will see in the
next two subsections, the OGMM can give the same
performance level with much less mixture components,
usually only one-fourth of that needed by the standard
GMM. For example, if we use 64 Gaussian functionsin the

standard GMM, only 16 Gaussian components is needed
for the OGMM to obtain the same performance. Suppose
the vector dimension is 16, then the standard GMM will
have 2112 parameters, while the OGMM only has 784. It
is known that the training and test time increases rapidly
with the number of mixtures. Therefore, to achieve a
specific performance level, OGMM is much faster than the
standard GMM.

33 | dentification Perfor mance

Figure 3 shows the relationship between the speaker
identification rate and the number of mixtures. The dotted
line is obtained from the standard GMM and the solid line
is from the OGMM. In this experiment, single phrase was
used as a test sentence, thus each point in the figure was
obtained from 1600 trials (40 speakers x 40 test
sentences). From the figure we see that if the same number
of mixtures is used, the OGMM always gives a higher
identification rate. A more careful examination here also
reveals that to reach the same performance level, standard
GMM needs about four times the number of mixtures used
by the OGMM. As we said above, a OGMM with 16
components needs less storage and is faster than the
standard diagonal GMM with 64 mixtures.
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Figure 3 Speaker identification performance with the
standard GMM and the OGMM.

34 Verification Performance

In the verification experiment, we evaluated the error rates
with two different test lengths. The reason we did this is
because we have found in another study that in order to
characterize the relationship between the verification
performance and the length of test sentences, evaluation
results at two different lengths are necessary. Besides, we
want to compare our results with that obtained by Renolds
[2]. In his paper, he had concatenated four strings together
as one test sentence.



By using one string as a test sentence, there were 40 improves with the dimension of feature vectors. Another
sentences from each customer and 800 sentences from 20 reason might be that we simply took all speakers of the
impostors. Since the total number of speaker models was same gender as the background speakers, while in
40 and each impostor's sentence was applied to all 40Renolds’ experiment, he made a careful selection for the
models, there were 4@0 customer scores and *8D0 reference speakers.

impostor scores. In the case of using 4 strings as a test

sentence, each verification performance was obtained from 4.

400 customer scores and 8000 impostor scores. The

SUMMARY

decision threshold value was post-determined after
obtaining all customer and impostor scores. We tested tw

In most systems based on the Gaussian mixture speaker

Omodels, diagonal covariance matrices are used. To provide

threshold values. One was selected so that the falsé better approximation to the distribution, a large number

rejection FR) rate equals to the false acceptaries) (rate.
Another case is th&A rate was pre-selected as 0.1%, an
theFR had to be determined.

d

Standard GMM Orthogonal GMM

Mixtures /| EER (%) | FR (%) @ EER (%) | FR (%) @

String length FA=0.1 % FA=0.1%
16/1 6.2 43.1 4.1 21.4
64/1 4.5 22.9 2.8 14.2
16/4 5.0 15.0 25 8.0
64/4 2.6 7.5 1.1 3.7

Table 1 Verification error rates with the standard GMM
and the OGMM.

The verification results are summarized in Table 1. As
expected, the verification performance improves with the

number of mixtures and the length of test sentences. Let'q3]

first look at the results with short test sentences (String
length = 1, ¥ & 2™ rows in Table 1). As in the speaker
identification experiment, for the same number of
mixtures, OGMM always performs better than the standard
GMM. We see that the performance of the OGMM with 16
mixtures is comparable with that of the GMM with 64
mixtures. Similar conclusions can be made with longer test
sentences (String length = 4% & 4™ rows in Table 1).
Remember that the OGMM with 16 mixtures needs less

memory space and is more faster than the standard GMM

with 64 mixtures.

Now we want to compare our results with that of Renolds
[2], who used the standard diagonal GMM in his

experiment. Even though both studies are based on the

GMM and the same YOHO database is used, the
verification error obtained in our experiment is slightly

mixture components has to be used. Here we have
proposed a modification to the standard diagonal GMM. In
the new model (named as OGMM), there is an orthogonal
transform matrix. Feature vectors are first transformed to
the space spanned by the eigenvectors of the covariance
matrix before applying to the diagonal GMM. It is shown
that with the same number of mixtures, the OGMM always
gives a better performance. To reach a specific
performance level, the OGMM needs only one-fourth the
number of mixtures used by the standard GMM, therefore,
the OGMM is more faster and needs less storage.
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higher. We think the main cause of this discrepancy is the

different feature vectors used in the two systems. In our

experiment, each feature vector was composed of 16

MFCC coefficients, while Renolds used a higher
dimension of feature vectors. In general, performance



