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ABSTRACT

We investigate herein the problem of amplitude estima-
tion of sinusoidal signals from observations corrupted by
colored noise. A relatively large number of amplitude esti-
mators are described which encompass Least Squares (LS)
and Weighted Least Squares (WLS) methods. Additionally,
�lterbank approaches, which are widely used for spectral
analysis, are extended to amplitude estimation. Speci�cally,
we consider the recently introduced MAtched-FIlterbank
(MAFI) approach and show that, by appropriately design-
ing the pre�lters, the MAFI approach includes the WLS
approach. The amplitude estimation techniques discussed
in this paper do not model the noise, and yet they are
all asymptotically statistically e�cient. It is their di�er-
ent �nite-sample properties that are of particular interest
to this study. Numerical examples are provided to illustrate
the di�erences among the various estimators. Though am-
plitude estimation applications are numerous, we focus on
system identi�cation using sinusoidal probing signals.

1. INTRODUCTION

Consider the noise-corrupted observations of K complex-
valued sinusoids

x(n) =
PK

k=1
�ke

j!kn + v(n); n = 0; 1; : : :N � 1; (1)

where �k denotes the complex amplitude of the kth sinu-
soid having frequency !k and v(n) is the observation noise
which is complex-valued and assumed to be stationary (and
possibly colored) with zero-mean and �nite unknown Power
Spectral Density (PSD) �(!). We assume that f!kg

K
k=1 are

known, with !k 6= !l, for k 6= l. The problem of interest is
to estimate f�kg

K
k=1 from the observations fx(n)gN�1n=0 .

We describe three general classes of amplitude estima-
tors, namely the LS, WLS, and MAFI approaches. The
amplitude estimators under discussion can be further cate-
gorized depending on whether they estimate one amplitude
at a time or all amplitudes simultaneously. The various
amplitude estimators are summarized in Section 5. We also
discuss a system identi�cation application using sinusoidal
probing signals. We show that, by using proper amplitude
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estimators, we can avoid the iterative search required by the
standard system identi�cation routines, such as the Output
Error Method (OEM), and achieve very good performance
at a usually reduced computational load.
This paper uses the following notation to distinguish

among the various amplitude estimators. For instance,
LSE(1; 0; 1) denotes the LS estimator that does not split
the data, uses no pre�ltering, and estimates one amplitude
at a time. Likewise, MAFI(L;K;K) denotes the MAFI es-
timator that splits the data into L subvectors, utilizes K
pre�lters, and estimates K amplitudes simultaneously. The
remaining amplitude estimators are similarly designated.

2. LS AMPLITUDE ESTIMATORS

2.1. LSE(1; 0; K)

Let us write the data sequence in the following form

x = ~A�+ v; (2)

where ~A is an N � K Vandermonde matrix, x =
[x(0) : : : x(N � 1)]T , � = [�1 : : : �K]

T , v =
[v(0) : : : v(N�1)]T , and where (�)T denotes the transpose.
The LS estimate of � is

�̂ = ( ~AH ~A)�1 ~AHx; (3)

where (�)H denotes the conjugate transpose. Note that v is
not modeled. Even so, (3) is asymptotically e�cient [1].

2.2. LSE(1; 0; 1)

Since the observation noise v(n) is not modeled, one way to
reduce the computational burden quite a bit is to include
K�1 sinusoids in the noise term and estimate one amplitude
at a time. The LSE(1; 0; 1) is easily derived as

�̂k = 1
N

PN�1

n=0 x(n)e�j!kn; k = 1; 2; : : : ;K; (4)

which is the Discrete Fourier Transform (DFT) of
fx(n)gN�1n=0 . LSE(1; 0; 1) is biased but asymptotically un-
biased [1]. Moreover, (4) is asymptotically e�cient [1]. In
�nite samples, (4) may be better or worse than (3) depend-
ing on the characteristics of the scenario under study [1].

3. WLS AMPLITUDE ESTIMATORS

3.1. WLSE(L; 0;K)

We de�ne the subvectors y(l) = [x(l) x(l+1) : : : x(l+M�

1)]T ; l = 0; 1; : : : ; L � 1;, where L
4

= N �M + 1. We have

y(l) = As(l) + �(l); (5)



where A is an M � K Vandermonde matrix, s(l) =
[�1e

j!1l : : : �Ke
j!K l]T , and �(l) = [v(l) : : : v(l+M�1)]T .

Alternatively, we can rewrite (5) as

y(l) = Al�+ �(l); (6)

where Al
4

= A diagfej!1 l : : : ej!Klg
4

= ADl. We will use
(5) mostly for analysis and (6) for estimation.
The WLS (Markov-like) estimate of � in (6) is given by

�̂ =
�PL�1

l=0
AH
l Q̂

�1Al

��1 �PL�1

l=0
AH
l Q̂

�1y(l)
�
; (7)

where Q̂ is an estimate of Q = Ef�(l)�H(l)g. To estimate

Q, we may proceed as follows. Let R̂ = 1
L

PL�1

l=0 y(l)yH(l).

One can verify that as L ! 1, R̂ goes to R = APAH +
Q, where P = diagfj�1j

2 : : : j�Kj
2g. Hence, one way to

estimate Q is as

Q̂ = R̂�AP̂AH ; (8)

where P̂ is made from some initial estimates of f�kg
K
k=1.

In the following we try to circumvent the need for initial
amplitude estimates in two di�erent ways.
First, we show a way to simplify the WLSE(L; 0;K) that

uses (7) with (8). Note that [1] Q̂�1Al = R̂�1A�Dl �

R̂�1ADl� = R̂�1Al�, where �
4

= P̂AHQ̂�1A + IK with
IK being the K �K identity matrix. Hence, (7) reduces to

�̂ �
�PL�1

l=0
AH
l R̂

�1Al

��1 �PL�1

l=0
AH
l R̂

�1y(l)
�
: (9)

The amplitude estimator in (9) can be interpreted as an
extension of the Capon method in [2] to multiple sinusoids.
A di�erent estimate of Q can be obtained as described

next. Observe that APAH =
PK

k=1[�ka(!k)][�ka(!k)]
H 4

=PK

k=1
�k�

H
k ; where a(!) = [1 ej! : : : ej(M�1)! ]T . Thus,

y(l) =
PK

k=1
�ke

j!kl + �(l): (10)

From (10), we can estimate �k one at a time via LS as

�̂k =
1
L

PL�1

l=0
y(l)e�j!kl

4

= g(!k): (11)

The use of (11) in (8) leads to

Q̂ = R̂�
PK

k=1
g(!k)g

H(!k): (12)

The WLSE(L; 0;K) that uses (7) with (12) is an extension
of APES in [3] to multiple sinusoids with known frequencies.
Remark : We note that �(k) and �(l) in (6) are correlated

(for k 6= l), which implies that (7) is suboptimal. Yet,
the WLS methods are likely to outperform the LS methods
because the latter completely ignore the correlation in v(n).

3.2. WLSE(L; 0; 1)

It is straightforward to show that the WLSE(L; 0; 1) that
uses (7) with (8) is

�̂k =
aH(!k)R̂

�1g(!k)

aH(!k)R̂�1a(!k)
; (13)

whereas the WLSE(L; 0; 1) that uses (7) with (12) is

�̂k =
aH(!k)[R̂� g(!k)gH(!k)]�1g(!k)

aH(!k)[R̂� g(!k)gH(!k)]�1a(!k)
: (14)

Note that, unlike (9), the equation (13) is exactly equiv-
alent to using (7) with (8). Equations (13) and (14) are
recognized to have the same form as the Capon [2] and,
respectively, the APES [3] spectral estimators. The two
estimators were derived in [4] [5] by a di�erent approach,
namely the MAFI approach, which we will consider in a gen-
eralized form in the next section. It is interesting that the
above two estimators, while both asymptotically e�cient ,
have quite di�erent �nite-sample properties. Speci�cally, it
was shown in [4] [5] that (13) is biased downward, whereas
(14) is unbiased (within a second-order approximation) and
in general has a better performance than the former.

4. MAFI AMPLITUDE ESTIMATORS

Let HH 2 C
�K�M be a matrix each row of which is a Finite

Impulse Response (FIR) �lter (for some 1 � �K �M). The
MAFI idea can be explained as follows: a) design HH so
that, when applied to fy(l)g, it maximizes the SNR at the
�K �lter outputs and b) estimate the amplitudes from the
�ltered data by, e.g., the LS or WLS technique. Mathemat-
ically, H can be obtained as follows:

H = argmax
H

tr
�
(HHQ̂H)�1HH(AP̂AH)H

�
| {z }

\Generalized SNR"

; (15)

where H is constrained in a way that is speci�ed later (in
particular, to guarantee that H is �nite), and tr(�) denotes
the trace of a matrix.
It was shown in [1] that the solution H is not unique. A

simple solution with �K = K is given by [1]

H = Q̂�1A(AHQ̂�1A)�1: (16)

The above H also satis�es the constraint HHA = IK, which
says that each (row) �lter in HH passes one sinusoid undis-
torted, and completely annihilates the others.
From (6), the �ltered data corresponding to (16) is

z(l)
4

= HHy(l) =Dl�+HH�(l)
4

=Dl�+ �(l): (17)

The covariance matrix of �(l) can be estimated as

HHQ̂H = (AHQ̂�1A)�1. It follows that the WLS
(Markov-like) estimate of � in (17) is

�̂ =
�PL�1

l=0 AH
l Q̂

�1Al

��1 �PL�1

l=0 AH
l Q̂

�1y(l)
�
; (18)

which coincide with (7).
The MAFI interpretation of the WLS method makes an

interesting connection between using the MAFI and WLS
techniques for amplitude estimation. However, the MAFI
approach is more general since the solution H is not unique
[1]. We derive in the following a new MAFI amplitude esti-
mator. Other interesting ones may exist and are yet to be
discovered. Let zk(l) and �k(l) denote the k-th element of
z(l) and, respectively, �(l) in (17). Then

zk(l) = �ke
j!kl + �k(l); k = 1; 2; : : : ;K: (19)



By LS, the MAFI(L;K;1) estimate of the �k is given by

�̂k = 1
L

PL�1

l=0
zk(l)e�j!kl: (20)

Unlike (13) and (14) (which are also members of
MAFI(L;K;1) [4]), (20) does require the knowledge of the
number and frequencies of the sinusoids, which makes it be-
have more like a MAFI(L;K;K) estimator. In particular, it
performs quite well when some sinusoids are closely spaced,
as shown in Section 5.

5. NUMERICAL EXAMPLES

For notational simplicity, we adopt the following acronyms
for the various amplitude estimators: i. LSE1: using (4);
ii. LSEK: using (3); iii. Capon1: using (13); iv. APES1:
using (14); v. CaponK: using (9); vi. APESK: using (7)
along with (12); and vii. MAFI1: using (20) along with
(12). The test data consist of three complex sinusoids
corrupted by an AutoRegressive (AR) noise described by
v(n) = 0:99v(n � 1) + e(n), where e(n) is a complex white
Gaussian noise with zero-mean and variance �2. The fre-
quencies of the sinusoids are 0.1, 0.11, and 0.3 Hz, the am-
plitudes are ej�=4; ej�=3, and ej�=4, and N = 32. We de-
�ne the Signal-to-Noise Ratio (SNR) of the k-th sinusoid
by SNRk = 10 log10N j�kj

2=�(!k). For those methods that
depend on M , we choose M = N=4 = 8 [1]. Figure 1(a)
shows the MSEs of the seven amplitude estimators for the
sinusoid at 0.3 Hz, along with the corresponding Cram�er-
Rao Bound (CRB), as the SNR varies. Figure 1(b) shows
the counterpart curves for the sinusoid at 0.1 Hz. A brief
summary based on these results (also see [1]) is as follows.
APES1 is recommended in applications where it is known
a priori that no two sinusoids are closely spaced (see, e.g.,
the application discussed in the next section), or when the
closely-spaced sinusoids are of no interest. The reason to
prefer APES1 to APESK or MAFI1 in such cases is that
the former is more exible than the latter two since APES1
does not necessarily require the knowledge of the sinusoidal
frequencies. In terms of computational cost, APES1 and
MAFI1 are similar to one another and both are simpler
than APESK. When it is desired to estimate closely spaced
sinusoids in colored noise, however, MAFI1 may be pre-
ferred. In general, we do not recommend the use of Capon1
since it has a computational complexity similar to that of
APES1 but is biased. Although we did notice that CaponK
gives close-to-CRB performance at very low SNRs, in most
cases of interest, other methods like APES1 or MAFI1 may
be preferred. LSEK is statistically e�cient and may be pre-
ferred when the observation noise is white; in cases where
the white noise assumption is invalid, it is preferable to use
APES1 or MAFI1. LSE1 gives comparatively rather poor
estimation accuracy but is computationally quite simple.
The performance di�erences stated so far occur only when
N is relatively small. As N increases, all methods tend to
the CRB, independent of the noise correlation. Hence, when
N is su�ciently large, LSE1 should be preferred because of
its computational simplicity.

6. SYSTEM IDENTIFICATION

Consider the linear discrete-time system described by [6]

x(n) = H(z�1)u(n) + v(n); n = 0; 1; : : : ;N � 1; (21)

where u(n) =
PK

k=1 ke
j!kn, and

H(z�1) =
B(z�1)

A(z�1)
=

b1z
�1+:::+bqz

�q

1+a1z�1+:::+apz�p
: (22)

We assume that K � p + q. If p and q are unknown, K
should be chosen su�ciently large. The problem is to esti-
mate faig

p
i=1 and fbjg

q
j=1 from fx(n)gN�1n=0 .

The commonly-used Output Error Method (OEM) min-
imizes the following criterion [6]

COEM(a;b) =
PN�1

n=0

��x(n)�H(z�1)u(n)
��2 ; (23)

where a = [a1 : : : ap]
T and b = [b1 : : : bq]

T . Let
�k(a;b) = kH(ej!k ). For su�ciently large N , the cost
function COEM(a;b) is approximately equivalent to

C1(a;b) =
PN�1

n=0

��x(n)�PK

k=1
�k(a;b)e

j!kn
��2 : (24)

The method that we propose for estimating a and b is based
on (24) and consists of two steps, as detailed next.
Step 1 Use an appropriate amplitude estimator, such
as APES1, to obtain estimates f�̂kg

K
k=1 of f�kg

K
k=1 from

the measurements fx(n)gN�1n=0 . The large-sample variance
of the estimated amplitudes f�̂kg

K
k=1 is proportional to

f�(!k)g
K
k=1 [1], which can be estimated from the residual

v̂(n) = x(n)�
PK

k=1
�̂ke

j!kn; n = 0; 1; : : : ;N � 1.
Step 2 Obtain estimates of fai; bjg by minimizing

C2(a;b) =
PK

k=1
1

�̂(!k)
j�̂k � �k(a;b)j

2 : (25)

To do so we can use a host of methods provided that we
have good initial estimates of a and b. To that end, we
assume that p and q are known. (Standard techniques for
system order determination can be found in, e.g., [6].) We
pick up the p+ q largest f�̂kg and de�ne a criterion made
from the corresponding terms of (25)

C3(a;b) =
Pp+q

k=1
1

�̂(!k)
j�̂k � �k(a;b)j

2 ; (26)

where we have assumed that f�̂kg
p+q
k=1 are the p+ q chosen

amplitudes. The minimization of (26) is simple since one
can set �̂k = �k(a;b), which is equivalent to

�̂k
k
A(ej!k ) = B(ej!k); k = 1; 2; : : : ; p + q: (27)

Equation (27) can be rewritten as a linear system of p + q
equations with p+ q unknowns fai; bjg.
Remark : By the Extended Invariance Principle (EXIP)

[7], the estimates of fai; bjg obtained by minimizing (25)
achieve the CRB asymptotically, and hence they have a
better asymptotic accuracy than the OEM estimates when-
ever v(n) is colored. It also follows from this observation
that in the case of K = p+ q, the estimates obtained from
(27) are asymptotically e�cient. This latter result (of a
somewhat limited interest since it requires K = p + q) was
�rst proved in [8] in a much more complicated way.
Consider now an example. The system is de�ned

by(22) with A(z�1) = 1 � 1:9109z�1 + 1:7251z�2 �
0:7033z�3 + 0:245z�4 and B(z�1) = z�1 + 1:0562z�2 +
0:61z�3 + 0:1912z�4 + 0:04z�5. The noise v(n) is an



AR noise similar to the one used in Section 5 except
that now e(n) is a real-valued white Gaussian noise
with zero-mean and �2 = 0:01. The probing signal is
u(n) = 2 cos(2�0:05n) + 2 cos(2�0:15n) + 2 cos(2�0:25n) +
2 cos(2�0:35n)+2 cos(2�0:45n). The probing signal and ob-
servation noise are real-valued since this is the usual case
in practice. To reduce the number of graphs, we only show
the averaged Root Mean Squared Error (RMSE) for the
a-parameters RMSEfâg = 1

p

Pp

i=1 RMSEfâig, and sim-

ilarly for the b-parameters. Figures 2(a) and 2(b) show
the averaged RMSEs of the a-parameters and, respectively,
the b-parameters obtained by using OEM and the proposed
technique, as N increases. Figure 2(c) shows the required
number of ops as N increases. For the proposed technique,
we compute both the initial estimates given by solving (27),
via LSEK, APES1 or MAFI1, and the minimizer of (25),
obtained by a standard gradient-type nonlinear optimiza-
tion routine. We use M = 20 for APES1 and MAFI1. As
one can see, the initial system parameter estimates given
by APES1 or MAFI1 are signi�cantly better than those
given by OEM, and yet the former two are computation-
ally more e�cient that the latter. The estimates obtained
by minimizing (25) are only slightly better than the initial
estimates obtained by APES1 or MAFI1, but at a signif-
icantly increased computational cost. Hence, minimizing
(25) for re�ned estimation accuracy is not recommended.
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Figure 1. EmpiricalMSEs and the CRB versus local
SNR. (a) �3. (b) �1.
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Figure 2. Averaged RMSEs and the number of ops
versus N . (a) RMSE of a-parameters. (b) RMSE of
b-parameters. (c) Number of ops.


