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ABSTRACT

In this paper, a new set of speech feature parameters
based on multirate signal processing and the Teager
Energy Operator is developed. The speech signal is
�rst divided into nonuniform subbands in mel-scale us-
ing a multirate �lter-bank, then the Teager energies of
the subsignals are estimated. Finally, the feature vec-
tor is constructed by log-compression and inverse DCT
computation. The new feature parameters have a ro-
bust speech recognition performance in car engine noise
which is low pass in nature.

1. INTRODUCTION

It is shown in [1{6] that speech can be modeled as a
linear combination of AM-FM signals in some cases.
Each resonance, or formant, is represented by an AM-
FM signal of the form

s(t) = a(t) cos[�(t)] = a(t) cos[

Z t

0

!i(�)d� + �(0)]:

(1)
where a(t) is a time varying amplitude signal and !i(t)
is the instantaneous frequency given by !i(t) = d�(t)=dt.
This model allows the amplitude and resonance fre-
quency to vary instantaneously within one pitch period.
In [3{6], it is also shown that the Teager Energy Oper-
ator (TEO) can track the modulation energy and iden-
tify the instantaneous amplitude and frequency. The
TEO is de�ned by

	c[s(t)] = [ _s(t)]2 � s(t)�s(t): (2)

where _s = ds
dt
. In the case of AM-FM signal of Equation

(1),

	c[s(t)] � a2(t)!2
i (t): (3)

assuming that the bandwidth of a(t) is much smaller
than that of !i(t) [6].

The idea that 	c is an energy measure is motivated
by the fact that an undamped oscillator consisting of a
mass m and a spring of constant k has a displacement
x(t) = A cos(!0t + �), with !0 =

p
k=m. The instan-

taneous energy E0 of this undamped oscillator is the
sum of its kinetic and potential energies and equals the
constant

E0 =
m

2
(A!0)

2: (4)

In this case, 	c[x(t)] = (A!0)
2. So the energy of the

linear oscillator is proportional to 	c[x(t)] [6].
In this paper, new feature parameters based on the

nonlinear model of (1) are developed using the TEO.
The speech signal is �rst divided into nonuniform sub-
bands in mel-scale using a multirate �lter bank. Then,
in each subband, the Teager energies are estimated. Fi-
nally, the feature vector is constructed by log-compression
and inverse DCT computation.

The idea behind using TEO instead of the com-
monly used instantaneous energy, is to take advan-
tage of the modulation energy tracking capability of
the TEO. This leads to a better representation of the
formant information in the feature vector compared to
the MELCEP [7] and SUBCEP [8] parameters in which
the regular instantaneous energy is used.

In Section 2 we formally de�ne the TEOCEP fea-
tures and in Section 3 we present some properties of
the TEO. In Section 4, we use the new parameters for
speech recognition under car engine noise which is of
low pass nature. Since the modulation energy of the
car noise is very low compared to that of the speech
signal, the TEOCEP's show better recognition perfor-
mance than MELCEP's and SUBCEP's.

2. THE TEOCEP FEATURE PARAMETERS

In our method, multirate subband decomposition [8{
10], is used in a tree structure to divide the speech
signal s(n) according to the mel-scale as shown in Fig.
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Figure 1: The sub-band frequency decomposition of
the speech signal

(1), and 21 sub-signals sl(n), l = 1; : : : ; L = 21, are
obtained. The �lter bank of a biorthogonal wavelet
transform is used in the analysis [11]. The lowpass
�lter has the transfer function

Hl(z) =
1

2
+

9

32
(z�1 + z1)�

1

32
(z�3 + z3): (5)

and the corresponding high-pass �lter has the transfer
function

Hh(z) =
1

2
�

9

32
(z�1 + z1) +

1

32
(z�3 + z3): (6)

For every sub-signal, the average Teager energy el

el =
1

Nl

NlX
n=1

j	d[sl(n)]j ; l = 1; : : : ; L: (7)

is estimated. In (7), Nl is the number of samples in
the lth band, and 	d[:] is the discrete-time version of
the continuous-time TEO which is obtained by approx-
imating derivatives with the two-sample backward (or
forward) di�erence [s(n) � s(n� 1)]=T where T is the
sampling period. Without any loss of generality, T can
be set to one, and the discrete-time version of the TEO
is given by

	d[s(n)] = s2(n)� s(n+ 1)s(n� 1): (8)

In this paper, the discrete version is used so from now
on the subscript 'd' is dropped.

Although it is possible that the instantaneous Tea-
ger energy have negative values in very rare circum-
stances, the average value el is a positive quantity for
most natural signals [4, 12]. Nonetheless, the magni-
tude of the Teager energy is used to ensure the non-
negativity of el. Log compression and inverse DCT
computation is �nally applied to obtain the TEO-based
cepstrum coe�cients,

TC(k) =
LX
l=1

log(el) cos[
k(l � 0:5)�

L
] ; k = 1; : : : ; N:

(9)
We call the new features TEOCEP's. The �rst 12
TC(k) coe�cients are used in the feature vector. Twelve
more coe�cients obtained from the �rst-order di�eren-
tials are also appended. A �nal feature vector with

dimension 24 is obtained and is used for training and
recognition.

The SUBCEP parameters used in [8] di�er from the
TEOCEP's just in the de�nition of the energy measure
used in Equation (7). In [8],

"l =
1

Nl

NlX
n=1

jsl(n)j ; l = 1; : : : ; L (10)

is used instead of el.
It is shown that the SUBCEP's perform slightly

better than the well-known MELCEP features [8{10].
For this reason, the performance of the TEOCEP's are
evaluated with respect to that of SUBCEP's.

3. PROPERTIES OF THE TEAGER

ENERGY OPERATOR

The TEO is an e�cient tool for nonlinear speech pro-
cessing as the speech is composed of a superposition
of AM-FM signals. To examine the behaviour of the
TEO in the presence of noise, we calculate the mean of
	[s(n)] or simply 	s(n)

Ef	s(n)g = Efs2(n)g �Efs(n+ 1)s(n� 1)g (11)

Assuming that the speech is stationary within the cur-
rent frame,

Ef	s(n)g = Rs(0)�Rs(2): (12)

where Rs(k) is the autocorrelation function of s(n).
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Figure 2: Power Spectrum Density of the car noise sig-
nal recorded inside a Volvo 340 on a rainy asphalt road
by the Institute for Perception-TNO, The Netherlands

In this paper, we are interested in voice dialing ap-
plications and consider the colored car engine noise.
The spectrum of the car noise v(n) is mostly concen-
trated in low frequencies as shown in Figure 2. Thus,
its correlation function varies very smoothly and it is
almost 
at near the origin for several lags. For this
noise signal, the �rst three autocorrelation lags are es-
timated as

Rv(1) = 0:9997Rv(0)
Rv(2) = 0:9991Rv(0)

(13)
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Figure 3: Spectrum of the car noise v(n) (dashed line)
and the spectrum of the Teager energy 	[v(n)] (con-
tinuous line)

Since Rv(0) � Rv(1) � Rv(2), we have 	[v(n)] � 0.
This leads to the spectrum of 	[v(n)] shown in Figure
3, which is almost 
at and negligible compared to the
spectrum of the noise v(n).

Clearly, for a typical speech signal, s(n), the �rst
three autocorrelation lags are not as close as in the car
engine noise case. For example

Rs(1) = 0:7415 Rs(0)
Rs(2) = 0:4584 Rs(0)

(14)

for the author's /a/.
Let the observed signal be x(n) = s(n)+v(n), where

s(n) is the noise free speech signal and v(n) is a zero
mean additive noise.

The Teager energy of the noisy speech signal x(n)
is given by

	[x(n)] = 	[s(n)] + 	[v(n)] + 2e	[s(n); v(n)] (15)

where e	[s(n);v(n)]=s(n)v(n)� 1

2
s(n�1)v(n+1)� 1

2
s(n+1)v(n�1),

is the cross-	 energy of s(n) and v(n).
Since s(n) and v(n) are zero mean and indepen-

dent, then the expected value of their cross-	 energy
is zero. Moreover, 	[v(n)] is negligible if the speech
resonance frequency fall within the current analysis
band [3]. Therefore

Ef	[x(n)]g � Ef	[s(n)]g (16)

On the other hand, with the commonly used instan-
taneous energy, the noise bias persists and is propor-
tional to the noise energy,

Efx2(n)]g = Rs(0) +Rv(0) (17)

As discussed in Section 2, TEOCEP's are obtained
via multiresolution analysis. If a speech formant falls
within an analysis band then its Teager energy is much
higher than the Teager energy of the noise. Due to this
reason, the formant information is well represented in
the TEOCEP feature set.

4. SIMULATION RESULTS

A continuous density Hidden MarkovModel based speech
recognition system with 5 states and 3 Gaussian mix-
ture densities is used in simulation studies. The recog-
nition performances of the TEOCEP feature parame-
ters are evaluated using the TI-20 speech database of
TI-46 Speaker Dependent Isolated Word Corpus which
is corrupted by various types of additive noise. The
TI-20 vocabulary consists of ten English digits and ten
control words. The data is collected from 8 male and 8
female speakers. There are 26 utterances of each word
from each speaker, where 10 designated as training to-
kens and 16 designated as testing tokens.

SNR
(dB) TEOCEP SUBCEP
30 99.66 99.15
10 99.26 99.05
7 99.37 97.98
5 99.05 97.02
3 98.84 96.41
0 98.17 95.14
-3 97.83 93.12
-5 96.86 90.62

Table 1: The average recognition rates of speaker de-
pendent isolated word recognition system with SUB-
CEP and TEOCEP features for various SNR levels
with Volvo noise recording.

Speaker dependent isolated word speech recognition
simulations are described in Table 1 and Table 2 for
Volvo car noise and white noise, respectively. The car
noise is recorded inside a Volvo 340 on a rainy asphalt
road by the Institute for Perception-TNO, The Nether-
lands. In the car noise case, the superiority of the
TEOCEP's over the SUBCEP's is obvious especially
at low SNR values. However, in white noise, just a
slight improvement is achived at low SNR values. This
can be theoretically predicted because for white noise
v(n), the autocorrelation function Rv(k) = 0 for k 6= 0.

In Table 3, speaker independent experiment results
with the Volvo car noise are shown. The utterances of
�ve men and �ve women were used for training. The ut-
terances of the rest speakers are used to test the perfor-
mance of the system. Again the TEOCEP parameters
outperform the SUBCEP's especially at low SNR's.

5. CONCLUSION

In this paper, new feature parameters, TEOCEP's, for
speech recognition are introduced. The new features



SNR
(dB) TEOCEP SUBCEP
20 97.79 98.37
10 87.07 87.7
7 86.12 85.17
5 82.97 81.70
3 79.83 79.50

Table 2: The average recognition rates of speaker de-
pendent isolated word recognition system with SUB-
CEP and TEOCEP features for various SNR levels
with white noise.

SNR
(dB) TEOCEP SUBCEP
30 91.22 91.25
10 91.13 90.96
7 90.74 89.94
3 89.10 88.40
0 87.13 86.63
-3 85.26 80.17

Table 3: The average recognition rates of speaker inde-
pendent isolated word recognition system with SUB-
CEP and TEOCEP features for various SNR levels
with Volvo noise recording.

are based on the Teager Energy Operator and the mul-
tirate sub-band analysis providing a robust recognition
performance under car noise.
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