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Abstract

This article addresses the problem of tracking moving ob-
jects using deformable models. A Kalman-based algorithm
is presented, inspired on a new class of constrained clus-
tering methods, recently proposed by Abrantes and Marques
in the context of static shape estimation. A set of data
centroids is tracked using intra-frame and inter-frame re-
cursions. Centroids are computed as weighted sums of the
edge points belonging to the object boundary. The use of
centroids introduces competitive learning mechanisms in the
tracking algorithm leading to improved robustness with re-
spect to occlusion and contour sliding. Erperimental results
with traffic sequences are provided.

1. INTRODUCTION

Video segmentation is an instrumental operation for dy-
namic scene analysis. It is not easy to detect the objects in
a scene and to estimate their motion, under general hypoth-
esis. In some applications the problem is easier: the initial
position of the object is known, e.g., defined by its exter-
nal boundary, and the goal is to track the object motion in
the next frames. This problem is interesting because the
image of a moving object suffers time-varying deformations
caused by the object motion and by occlusion. Besides, the
object is often cluttered by a textured background.

Deformable models have been used to address this prob-
lem. Since the seminal work of Kass et al. [7], where the
snakes were used for lip tracking, deformable models have
been extensively used in many tracking applications, for
instance biomedical image-analysis [8], extraction of facial
features [13], or the analysis of traffic scenes [11]. A re-
cent trend consists of addressing the problem in a prob-
abilistic context. This allows to incorporate the available
knowledge into separate models: the shape/motion and the
sensor models.

It is often assumed that the object boundary is a curve
belonging to a set of admissible shapes. Several classes
of models have been proposed, e.g., point models [7], B-
splines [9] and Fourier series [12]. The class of admissible
shapes is often too general, being necessary to bound the
number of shape variation modes, to reduce the degrees of
freedom. This goal can be achieved in a number of ways,
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e.g., by restricting the shape to be a linear combination of
templates defined by the user or estimated from the data
(e.g., using eigen shapes [5]).

The motion model is a key feature in the tracker perfor-
mance. It allows to predict the object position and velocity
in future images and restricts the trajectories of the object
boundary parameters: the evolution of motion and shape
parameters must be constrained by assigning a high cost to
unusual trajectories. This can be done by using stochastic
difference equations. The estimation of shape and motion
is then converted into a state estimation problem addressed
by Kalman or non-linear filtering [13, 3].

The design of the sensor model is also a key feature
to the sucess of a tracking algorithm. The shape model is
attracted by the data features detected in the image (e.g.,
edge points). Two strategies are usually adopted in the
literature to describe the data/model interaction: the as-
signment of model points to data features using a matching
algorithm (explicit methods) or the use of a potencial func-
tion generating a force field (implicit methods). In this
paper a third approach will be adopted based on a fuzzy
classification of the data features using competitive learn-
ing. This is achieved by employing a unified framework
recently proposed by Abrantes and Marques [1].

This paper extends the unified framework developed in
the context of static shape analysis, to the problem of object
tracking in dynamical scenes. The algorithm proposed in
this paper exhibits good tracking capabilities and improved
robustness with respect to incomplete data and outliers.
The paper is organized as follows: section 2 describes the
shape/motion dynamical models; section 3 addresses the
observation (sensor) model; section 4 presents a tracking
algorithm based on a Kalman filtering using the previous
models; section 5 shows some experimental results, and sec-
tion 6 concludes the paper.

2. SHAPE AND MOTION REPRESENTATION

Given a sequence of images I, ..., I;, we wish to estimate
the boundary of a moving object. In this paper, the ob-
ject boundary will be approximated by a parametric curve
defined as a weighted sum of basis functions by, ..., by, i.e.,

z(s) = zkbi ()
k=1

2(s)eR® (1)

where s is a parameter defining the location of a point z
on the curve and zi1,...,2n, 2; € R? is a set of 2D vec-



tors which control the model shape. The basis functions
are chosen by the user. Equation (1) can be written in a
compact way as

z(s) = B(s)Z ()
where B(s) = [bi(s),...,bn(s)] is a 1 x N row vector and
Z = (X,Y) is a N x 2 matrix of coefficients. The object
boundary dedined in (1) belongs to a vector space with fi-
nite dimension 2/N. Since the object is moving, the matrix
Z is allowed to vary. This dependency becomes more ex-
plicit rewritting (2) as z(t,s) = B(s)Z(t). A dynamical
model is adopted in the sequel to represent the evolution
of Z. We will assume that the columns X,Y of Z are in-
dependent random processes. Furthermore it is considered
that X (¢) is defined by a stochastic difference equations

z(t) = Az(t — 1) + w(t) (3)

where z(t) = (XT(t), XT(t))T is a state vector containing
X and its derivative , A is a dynamic matrix and w(t) is a
white noise processes with Gaussian distribution N'(0, Q).
Equation (3) defines a stochastic model for the evolution of
the object boundary through time. A similar equation is
used for the second coordinate Y ().

3. OBSERVATION MODEL

In order to track a moving object, a set of visual features are
extracted from the video sequence. A common approach
consists of sampling the model contour (e.g., a B-spline),
and for each sample point seeking for the highest image
gradient point lying inside a search window (e.g., using a
strip band orthogonal to the model contour [4]). This is a
low-complexity method, well suited for real-time tracking
applications. Unfortunately this measurement has two ma-
jor drawbacks: it is very sensitive to false-alarm detection
and it usually produces significant contour sliding due to
the aperture problem [6].

A different approach to compute the visual features
was proposed in [1], based on an unified data clustering
framework containing several well known methods as spe-
cial cases: snakes, c-means, fuzzy c-means, elastic nets and
Kohonen maps. A method belonging to this unified frame-
work, instead of explicity associating an image feature to
each model point, selects a large set of candidate features
from the image, (e.g, all the edges points) and attempts to
associate them (in a fuzzy way) to the model points, ob-
tained by sampling the contour model. The fuzzy partition
of the feature space depends on the method being used. De-
noting by ¥,(p) the weight degree of membership of edge
point p € R to the k-th model sample, z(s,), it becomes
natural to associate z, with a visual feature, defined as the
centroid of the k-th fuzzy region, i.e.,

_ Ep PYn(p)

én
Hn

(4)
where

Mo = Z U5 (p) (5)

measures the amount of data in the k-th region. The exter-
nal force applied on each model point is defined by

fewt(2n) = pn(€n — 2(s0)) (6)

which can be interpreted as a force produced by a zero-
length spring with stiffness un, coupling the model sample,
2(sn), to the corresponding centroid, &,, (see figure 1).

The choice of the weighting functions 9, (p) is a key issue
in the performance of the algorithm. They are obtained by
the minimization of a cost function often used in clustering
algorithms (see [1] for details). It should be stressed that in
shape analysis the scope of the weighting functions must be
bounded to avoid long range forces namely, the attraction
of the contour points by edges detected inside the object or
in the background. These are undesirable forces which have
to be cancelled. To achieve this goal, ¥, (p) is multiplied by
an appropriate window, going to zero when |p — z,| — oo.
A Gaussian function will be used for this purpose, leading
to modified weights

In(p) = In(p) eXP( Lz gl > (7)

2
20,

where o is a scale parameter. Alternative methods using
a noise model can be found in [2].

Figure 1: Spring forces applied on each point model.

It is important to observe that p, and & are iteratively
estimated and in general they depend on the whole set of
model samples. This is a consequence of the competitive
learning embeded in the computation of 9,. The potencial
energy of the stretched spring is given by

1 2
p, = Eﬂn &n — B(Sn)Z (8)

Adopting a Gibbsian approach, the quadratic energy (8)
leads to a Gaussian sensor distribution.

P(a12) = N (B(s.) 2,0 1) ©)
Therefore, the centroids are represented by
E(sn,t) = CnZ(t) + vn(t) (10)

where C;, = [B(sn) 0] and v, (¢) is a white noise with Gaus-
sian distribution A'(0, u,; ' I).

Several methods can be used to define the weight 9, (p)
inspired in constrained clustering algorithms. Most of them
introduce competitive learning mechanisms since the model
points compete to represent each image feature. An excep-
tion is the snake algorithms which can also be expressed in
terms of centroids. In general, the use of centroids com-
puted with competitive learning increases the tolerance to
outliers and reduces the sliding effect. Figure 2a,b shows
the centroids obtained with and without competitive learn-
ing using the fuzzy c-means and the snakes. As we can



see the fuzzy c-means algorithm leads to better motion es-
timates. This improvement becomes more clear when the
model is iteratively updated during the measurement pro-
cess as discussed in section 4.

(c) (d)

Figure 2: Data centroids after the 1st (a, b) and the 5th
(c, d) iterations using (a, ¢) fuzzy c-means and (b, d) snake
sensor models. (O - model units, 7 - centroids.

In this paper, we shall adopt the weights of the fuzzy
c-means algorithm. In this case,

1N\ —f
|2(sn) —p*\ 7
In = T 11
w={2 (F=2 -
where f is a fuzziness parameter.

4. TRACKING ALGORITHM

Given the state model with dynamic equation (3) and ob-
servation equation (10), the state vector can be estimated
from the observed images using two independent Kalman
filters to estimate z(t), y(t), respectively. Kalman filtering
is based on two steps:

e a prediction step which predicts the state vector and
error covariance at time ¢, knowing the observations
until the instant ¢ — 1.

e a filtering step which updates the predicted values
based on the observation at instant ¢.

The evaluation of the observation (data centroids) is
not trivial since it depends on the shape estimates: bet-
ter shape estimates provide more accurate centroids. This
suggests a recursive measurement process. At each instant
of time, we recursively compute a set of centroids associ-
ated with curve samples 2(s1), ..., 2(sn) obtained from the
current shape estimate. These estimates updated during
the measurement process until all the centroids converge to
steady locations. Convergence is usually achieved after a

small number of iterations (typically less than 5). Figure
2c,d shows the centroids obtained after 5 iterations using
the weighting functions of snakes and fuzzy c-means algo-
rithms. Comparing with the results obtained in figure 2,
after the first iteration, a significant improvement is ob-
served in the case of fuzzy c-means method. No motion
model is used during the measurement iteration since this
is an intra-frame recursion.

To enhance the robustness of the tracker it is often con-
venient to restrict the class of admissible shapes. A simple
way to achieve this goal is by considering the object as an
affine transform of a reference shape, defined by the user.
A method to incorporate this information in the estimation
process is the persistent template algorithm described in [4].

The tracking algorithm proposed in this paper is de-
tailed in table 1; &(t), P(t) denote the state estimate and
the covariance matrix of the estimation error at the t-th im-
age, and Tquz, Paur are auxiliary variables used for centroid
refinement in the measurement loop.

Kalman Prediction:

27(t) = Az(t - 1)

P~ (t) = AP(t-1)AT +Q
Loopl: measurement loop

Tauz < (1)

Pouz < P (t)

Loop2: for all sampling points x(sn)
Compute £(sn) = (§2(5n),8y(sn)) by (4)
Filtering step
K + Paumcz‘ [ CnPauacer: +H;Ll ]7
Tauzr < Tauzr + K( gz(sn) - nlaux )
Pauz < [ I—=KCy | Pava

EndLoop2

State updating using persistent template [4]

EndLoopl
Z(t) = Taua
P(t) = Paux

Table 1: Tracking Algorithm.

5. EXPERIMENTAL RESULTS

The proposed algorithm was evaluated with real images and
succeed to follow moving objects in cluttered backgrounds.
Figure 3 shows a segment of a traffic sequence exhibiting
velocity changes and partial occlusions caused by the trees.
The difficulty of the problem can be observed in the edge
images displayed in figure 5. It is stressed that edge points
are the only features used for tracking in this method. The
tracking results (see the black curves in figure 3) show the
ability of the proposed algorithm to deal with incomplete
data and significant pose and velocity changes which occur
during the manoeuvre of the car.

When the centroids are evaluated without competitive
learning, the control points tend to cluster in regions with
higher density of data, due to the sliding effect. This leeds



to poorer representations of the object shape as can be ob-
served in the Figure 4.

Figure 3: Tracking results using fuzzy c-means algorithm
(frames 13, 19, 23, 39).

Figure 4: Tracking results using snakes algorithm (frames
13, 19, 23, 39).

6. CONCLUSIONS

This paper studies the estimation of non rigid shapes in
image sequences using a Kalman-based tracking algorithm
with a novel type of observations. These observations are
computed using the Fuzzy c-means algorithm with isotropic
limitation of attraction regions. Although the fuzzy c-means
algorithm has been recently used by other authors for track-
ing [10], the algorithm proposed in this paper is derive from
an unified framework described in [1] which allows an easy
extension to other types of methods (e.g., Kohonen maps,
elastic nets). Image features (edges points) are converted

e
i

Figure 5: Sequence of edges used in tracking.

into a set of centroids computed with appropriate weight-
ing functions. Therefore, the user may change the per-
formance of the algorithm by simply replacing the set of
weighting functions by alternative ones. Experimental re-
sults with traffic sequences allow to conclude that the pro-
posed algorithm is able to deal with object tracking in clut-
tered backgrounds as well as partial occlusion of the object
boundaries, exhibiting good tracking capabilities. Further
improvement is expected by using more efficient representa-
tions of the trajectories of the motion and shape parameters
and by restricting these parameters to apropriate manifolds.
The choice of a vector space of affine shapes adopted in this
paper is just a first step towards this purpose.
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