
TROBIC: TWO-ROW BUFFER IMAGE COMPRESSION
Viresh Ratnakar

Epson Palo Alto Laboratory
3145 Porter Drive, Suite 104

Palo Alto, CA 94304

ABSTRACT
We describe a color image compression and decompression
scheme suitable for high resolution printers. The proposed
scheme requires only two image rows in memory at any time,
and hence is suitable for low-cost, high-resolution printing
systems. The compression ratio can be specified and is achieved
exactly. Compound document images consisting of continuous-
tone, natural regions mixed with synthetic graphics or text are
handled with uniformly high quality. While the target
compression ratios are moderate, the quality requirements are
extremely high: the compressed and decompressed printed
image needs to be virtually indistinguishable from the original
printed image. The scheme combines a lossless block coding
technique with a wavelet block codec. The wavelet block codec
uses a new and simple entropy coding technique that is more
suitable for the specific block-structure, compression target, and
discrete wavelet transform used.

1. INTRODUCTION

Printer technology today can support very high resolution
printing: resolutions as high as 1440×720 dots per inch (dpi) are
becoming increasingly available. At these resolutions, the size of
a single digital image is of the order of tens or hundreds of
megabytes. For example, an 11"×8.5" color image at 1440×720
dpi requires 15840×6120×3 bytes (each of the three color
channels, R, G, and B, uses one byte per pixel), i.e., 290
megabytes. Compression becomes a very important requirement
for such systems, in order to reduce printing time as well as
printer cost. Compression can reduce printing time by speeding
up the data transfer to the printer. A more serious requirement
arises inside the printer; often, print-engines require the entire
image to be available in memory before they can start printing. In
fact, print-engine speeds in terms of pages-per-minute are usually
specified assuming that all the page images are in memory. Low-
cost printers may not be able to afford to carry 290 megabytes (or
more) of RAM. This problem can be alleviated by using
compression and inserting a software/hardware decompression
module between the printer memory and the print engine.

The proposed scheme, Trobic (Two-Row Buffer Image
Compression) seeks to provide a low-cost solution to the printer
compression problem. A major constraint for designing Trobic
was that its memory requirement be minimal, to enable
inexpensive modules that can be easily plugged in at any point
during the printing pipeline. Trobic uses only two image rows at
any time. An additional crucial requirement was that at 3:1
compression the quality of the printed image should not suffer at
all, and that quality of compound images consisting of text, line-

art, graphics, and natural imagery should be uniformly high.
While images displayed on computer monitors may
accommodate substantial distortion before the eye can notice
them, for a high quality printed image, a single off-color speck
on a uniform area becomes unacceptably objectionable. Finally,
Trobic had to be designed to achieve guaranteed compression,
without which the printer would be unable to print images whose
compressed size exceeds the available memory.

2. OVERVIEW
In order to handle compound images well, Trobic uses a block-
based coding approach, in which each block is automatically
classified as natural or non-natural and is coded accordingly.
After extensive experiments, the block dimensions were chosen
as 32×2 (block height is 2, to meet the two-row buffer
requirement). Let W and H denote the width and height (in
pixels), respectively, of the input color image, and assume (for
simplicity) that W is an exact multiple of 32 and H is even. Let ρ
denote the target compression factor (that is, the size of the
compressed image should not exceed W×H×3×8×ρ bits). The
Trobic encoder processes the image block by block, using the
following strategy:

• Bit-budget apportionment: The overall bit budget is
dynamically distributed to the blocks such that each
block is guaranteed to get a bit-budget of at least
32×2×3×8×ρ (= 1536ρ) bits. In any of the block coding
modes described below, the specified block bit-budget
is guaranteed not to be exceeded. Some bits may be
saved while coding a block within its budget. While it is
possible to have a complex bit-budget apportionment
strategy that distributes the budget according to block
complexity and distributes the saved bits too according
to some sophisticated criteria, it is difficult to absolutely
guarantee compression as well as quality using such
schemes. For example, if the overall budget is
distributed such that simple blocks get less than their
uniform share (1536ρ bits) and complex blocks are
allocated more than their uniform share, image quality
will suffer near the end of the image if it consists of lots
of complex blocks. Our simple apportionment strategy
can be described as follows: if n is the number of blocks
coded previously, and Bn is the number of bits used thus
far, then the next block is allocated a budget of
(1536ρ(n+1) - Bn) bits. Note that each block's budget is
thus guaranteed to be at least 1536ρ bits.

• Three block coding modes: In order to achieve
uniformly high quality in compound documents, Trobic
uses three coding modes, classifying each block as a P-
block, or an A-block, or a W-block. The P-block codec

is designed for synthetic regions of the image which do
not have smoothly varying colors, for example, perfectly
black text on perfectly white background. The P-block
codec is lossless. Image blocks with smoothly varying
(natural) pixel intensities get classified as W-blocks, and
are coded in a lossy manner using a discrete wavelet
transform. If the image consists largely of P-blocks, then
the coding will be very efficient (in the sense that
(1536ρ(n+1) - Bn) will be very high most of the time).
In this case, blocks may be coded without any
compression, and are labeled as A-blocks.

• P-blocks: Depending upon the input parameter ρ, the
Trobic encoder calculates a cutoff size, P (the
relationship between ρ and P will become clear later). If
an image block has no more than P distinct colors, then
it is labeled a P-block.

• A-blocks: If an image block cannot be classified as a P-
block, and if its block bit budget exceeds A (another
cutoff parameter whose meaning will become clear
later), and if no previous block has been labeled a W-
block, then it is labeled an A-block.

• W-block: If an image block cannot be classified as a P-
block or an A-block, then it is labeled a W-block.

3. P-BLOCKS
The motivation behind Trobic's block classification strategy is
that a 32×2 block from a very high resolution image is not likely
to have too many distinct colors if it comes from a text or line-art
or graphics region in the image. These blocks (the ones with
fewer than P colors) are labeled P-blocks and are coded
losslessly, as any pixel distortion in such a block is likely to be
very visible. When a block has several distinct colors, it can
accommodate more distortion, and hence the lossy wavelet
coding mode is appropriate for it (i.e., it is labeled a W-block).

The letter P in “P-block” stands for Palette. A P-block is
compressed by first coding its palette (which is a table consisting
of all the distinct colors used in the block) and then coding each
pixel as an index into the palette. The cutoff parameter P is
chosen such that the largest palette and the indices fit in the
minimum bit budget. Thus, P is set to be the largest value that
satisfies:

24P + 64 log2P ≤ 1536ρ - ∆P,

where 24P is the number of bits needed to code the palette, 64
log2P is the number of bits needed to code all the pixels as
palette indices, and ∆P is the overhead for a P-block. The
overhead consists of bits needed to encode block kind, and bits
needed to encode palettes size. The block kind for P-blocks is
encoded in Trobic using the fixed 1-bit code, “0.” Trobic does
not allow P to exceed 16, and hence four bits are enough for
encoding the palette size (1-15). Thus, ∆P=1+4=5. For 3:1
compression, for example, P is obtained as 10.

The actual palette size for a P-block may be much smaller than P.
Trobic uses a novel run-length coding technique in certain
situations, while still guaranteeing that the bit-budget is not
exceeded. Let p denote log2P. Let Y denote the actual palette
size in a P-block, and y denote log2Y. If y equals p, then Trobic
does not use run-length coding, as in this case one cannot

guarantee that run-length coding will never increase the coded
size. If y is less than p, then after coding each pixel's index in the
palette (which requires y bits), Trobic has at least one bit to spare
without exceeding the budget. Trobic uses the following small
variable-length code to code the length of the run of subsequent
pixels with identical value:

• The code “0” is used to indicate a run-length of zero.

• The code “10” is used to indicate a run-length of one.

• The code “11[r-2] ” is used to indicate a run-length of r≥ 2,
where [r-2] denotes the binary representation of r-2 using p

bits. If r exceeds 2p+1, then r is set to 2p+1, and only 2p+1
pixels are counted in the run.

It can be seen that this variable-length code ensures that the
block budget is never exceeded.

4. A-BLOCKS
When a document consists mainly of text and graphics, with
perhaps a small natural image or two, somewhere in the middle,
Trobic is likely to have saved a lot of bits on the P-blocks,
because of run-length coding. If a block cannot be classified as a
P-block, but the budget available for it is very large, Trobic
classifies it as an A-block and codes it “As-is,” that is, it simply
puts all the pixel bits from the block directly into the coded bit-
stream. This requires a budget of at least 1536 bits, plus some
room for the overhead for encoding block kind (which is at most
2 bits in Trobic). Thus, Trobic classifies a block as an A-block
only if its budget exceeds or equals A = 1538 bits. Moreover, a
block cannot be classified as an A-block if some previous block
has been classified as a W-block. The reason is that A-blocks are
very wasteful, and if some block did get classified as a W-block,
it is likely that some future block will also be a W-block, and
making the current block an A-block will take a substantial
chunk out of the remaining budget.

Thus, during the encoding process, Trobic may classify blocks as
P-blocks or A-blocks up to a point, after which the first W-block
is seen. Subsequently, blocks are classified only as P-blocks or
W-blocks. The code at the beginning of each block, which
identifies the block kind, is set as follows: initially, “0” denotes a
P-block, “10” denotes an A-block, and “11” denotes a W-block.
If a W-block is coded, then subsequently, “0” denotes a P-block
and “1” denotes a W-block.

5. W-BLOCKS
Given a W-block and a bit-budget, the Trobic encoder subtracts
from the budget the number of bits that are needed to code the
block kind (2 bits for the first W-block and 1 bit thereafter).
Trobic codes W-blocks in (Y,Cb,Cr) color space. The bit-budget
is divided up into budgets for the Y, Cb, and Cr channels (in the
proportion of 5:2:2, in the current implementation). We now
describe the coding process for a single 32×2 block I of pixels,
given a bit-budget, B.

This coding process is the key quality determinant in Trobic, as it
is the only part that involves lossy compression. In order to
provide guaranteed compression, a natural choice of method for
coding these blocks is to use some energy compacting transform

and code only as much information about the coefficients as
would fit in the bit-budget. Trobic uses a discrete wavelet
transform (DWT) that can be described as a subband
decomposition using two biorthogonal filters. The Haar filter is
used on columns (the block height is only 2), and in the last step
of the subband decomposition, while in the other decomposition
steps, a filter reported by Villasenor et. al. [7] is used. This filter,
which we refer to as the 2-6 filter, has some nice properties for
compression such as regularity, nice impulse and step response
(see [7] for details), and can be implemented using integer
arithmetic. We omit the filter details here, as many other suitable
filters can be used to replace the 2-6 filter. For details on the
implementation using the 2-6 filter, please refer to [3].

The DWT on I results in a 32×2 block of coefficients, C. We
number the coefficients in raster order as C(0) through C(63).
The coefficients and their subband structure is shown, together
with a subband number for each subband, in Figure 1.

Figure 1. Trobic's DWT coefficients and their subband
structure.

Figure 2. Trobic's DWT coefficients and their subband
structure.

5.1 Tree structure of the DWT coefficients

The 64 DWT coefficients can be seen to form a tree (Figure 2).
Each level in the tree corresponds to coefficients for a particular
scale, while each subtree corresponds (roughly) to a subset of the
original pixel area. The rectangular boxes drawn around some
coefficients show the grouping used by the Trobic encoder,
which will be explained in the next subsection. Level 0 of the
tree corresponds to the single DC coefficient in subband 0. Level

1 has just the one coefficient in subband 1. Levels 2, 3, and 4
correspond respectively to subbands 2, 3, and 4, respectively.
The leaf level (level 5) has the highest frequency coefficients
from subbands 5, 6, and 7. The spatial extent of coefficients from
a particular subtree is seen to be the following: Each coefficient
at the leaf level (5) corresponds to a 2×2 pixel area and each
subtree rooted in level 4 corresponds to a 4×2 pixel area. Each
subtree rooted in level 3 corresponds to an 8×2 pixel area and
both the subtrees rooted in level 2 correspond to a 16×2 pixel
area. This correspondence is only a rough approximation, as the
filters used span more than 2 inputs.

In state-of-the-art wavelet-based image coders, such a tree
structure is coded by utilizing the fact that very often, the
absolute magnitude of a parent coefficient is no less than the
absolute magnitudes of all its children [4,5]. This fact is utilized
in the coding process, as follows: The absolute magnitudes of
coefficients are compared against a sequence of thresholds which
are successively decreasing powers of 2 (other thresholds are
possible, but powers of 2 lead to simple and elegant algorithms
and are most commonly used). For each threshold, some
coefficients will be seen as significant (i.e., their absolute
magnitudes will exceed or equal the threshold) for the first time.
The positions and signs of all the these coefficients are coded
efficiently using entropy coding of symbols denoting frequently
occurring cases such as an entire subtree being zero (a zerotree)
[4,5] and an entire subtree excepting its root being zero [4]. Once
a coefficient becomes significant, its bits are progressively
included in the coded bit-stream, one bit during each
thresholding step. Typically, these bits are not entropy coded as
they are likely to be uniformly random. The coding process
continues (with smaller thresholds) until the bit-budget is
exhausted. This description is meant to be a general overview;
specific encoders have several details and differences.

An alternative way of looking at the above coding process (which
would lead to the new coding technique used in Trobic) is as
follows. Suppose we list the bits of the absolute magnitudes of
the coefficients in a list, starting at C(1) (Figure 3).

C(1) � � � � � � � � � � � � � �

C(2) � � � � � � � � � � � � � �

C(3) � � � � � � � � � � � � � �

C(4) � � � � � � � � � � � � � �

C(5) � � � � � � � � � � � � � �

C(6) � � � � � � � � � � � � � �

C(7) � � � � � � � � � � � � � �

… « ←Cutoff = 5 bits

Figure 3. Trobic's DWT coefficients and their subband
structure.

Let the most significant 1-valued bit of each coefficient be called
the S-bit (the S-bits are highlighted in dark gray in Figure 3). The
coefficients that are negative are identified by underlining their
S-bits. Then the above coding process results in finding a cutoff

16 17 32 33 48 49

0

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

30 31 46 47 62 63

C(1) C(4)..C(7)

C(0) C(2) C(3)

C(8)…C(15) C(16)………………C(31)

C(32)………………C(47) C(48)………………C(63)

10 3 4 5

6

2

7

bit position (which is the smallest power of 2 used as a
threshold), which is shown by a dotted line in Figure 3. The S-bit
position and sign of each coefficient is encoded in the bit-stream
(unless the S-bit position is to the right of the cutoff). The light-
gray bits for each coefficient (bits to the left of the cutoff but
excluding the S-bit) are also included in the bit-stream.

Let Bs denote the number of bits spent in coding the S-bit
positions and signs, and let Bc denote the number of bits spent in
coding the light-gray bits (which is the same as the number of
light-gray bits, when there is no entropy coding of these bits).
Then the cutoff found by the coding process has to be the right-
most cutoff such that Bs+Bc ≤ B, where B is the total bit-budget.

5.2 Tree encoding in Trobic

We found that the zerotree approach for coding DWT
coefficients can be improved upon substantially, for the specific
block-structure in Trobic. The reason is that at the high bit-rates
and for the 32×2 block size used in Trobic, quite a few of the
coefficients are non-zero. With fewer zerotrees, Bs becomes quite
high as for each non-zero coefficient we have to code the exact
position of its S-bit. This results in a smaller remaining budget
for Bc, and hence a larger cutoff. We also tried the stack-run
coding approach [6], but found the new method (explained
below) to be better (again, because of the specific block-structure
and the high bit-rates). This new method also has the advantage
that it avoids complex entropy coding techniques such as
Huffman coding and arithmetic coding, and hence is extremely
simple, computationally.

Trobic groups the AC coefficients into thirteen groups, these are
shown using dotted rectangular boxes in Figure 2. The idea in
zerotree coding is that the S-bit position of the root of any
subtree dominates that of its children. Trobic uses the fact that
the S-bit position within any group is likely to be similar. For
each group, the encoder codes the largest S-bit position, s, within
the group, and then each coefficient in the group is coded as if its
S-bit position were also s. While this results in some zero-valued
bits to the left of the actual S-bits being encoded, there are
substantial savings compared to the case when each S-bit
position is identified exactly.

Trobic's DWT coefficient coding process can be summarized
thus:

1. Put C(0) in the bit-stream, exactly (requires 11 bits, for
Trobic's DWT).

2. Calculate the least cutoff that would allow the block to be
coded without exceeding the remaining bit-budget. This can
be done exactly, by keeping track of the number of
coefficients whose S-bit will be to the right of the cutoff, for
each possible cutoff. Put the value of this cutoff, c, in the
bit-stream.

3. For each coefficient group, put in the bit-stream the value of
the largest S-bit position, s, within the group. For each
coefficient in the group, put s-c bits to the left of the cutoff
into the bit-stream. If these bits are not all zero, put a bit in
the bit-stream to indicate the sign.

There are some more minor issues that need to be dealt with, in
order to achieve the budget exactly. The details of Trobic's W-
block coding can be found in [3].

6. DISCUSSION

The ultimate objective of Trobic is that the printed image after
3:1 compression and decompression be indistinguishable from
the original. This objective is achieved fairly well. The PSNR
values are not particularly suitable to judge the quality of a
compound image consisting of natural regions and graphics
regions. The PSNR values achieved on the color Lena image are:
50.1 dB (Y), 40.8 dB (Cb), and 40.5 dB (Cr), at 3:1
compression. For Lena, all blocks are W-blocks. We are not
aware of any other lossy compression technique that uses only
two image rows and guarantees to achieve the specified
compression ratio, so it is hard to compare these PSNR results to
anything else. It would be interesting to see how well the W-
block coding technique used in Trobic can be extended to more
“square” block dimensions, such as 8×8, (the block size in JPEG
[2]). While having only two image rows in memory at any time is
not very efficient for natural image regions, it is actually useful in
providing the granularity needed to separate graphics regions
from natural regions. Further work on Trobic is focussing on
ways to use Trobic's block classification and its DWT to
simplify/improve some of the other steps in the printing pipeline,
such as sharpening blurred images.

Please note that there is a patent application pending on the
Trobic technology.

7. ACKNOWLEDGEMENT

The author thanks Bhaskaran Vasudev, Anoop Bhattacharjya,
and Hakan Ancin for their valuable comments and insights.

8. REFERENCES
[1] DeVore, R. A., Jawerth, B., and Lucier, B. J. “Image

Compression Through Wavelet Transform Coding.” IEEE
Trans. Inform. Theory, 38(2):719–746, March 1992.

[2] ISO 10918-1 JPEG Draft International Standard and CCITT
Recommendation T.81.

[3] Ratnakar, V. “SBCW: A Simple Block Codec with
Wavelets.” Epson Palo Alto Laboratory Technical Report,
November 1997.

[4] Said, A. and Pearlman, W. A. “A New, Fast, and Efficient
Image Codec Based on Set Partitioning in Hierarchical
Trees.” IEEE Transactions on Circuits and Sysems in Video
Technology, 6(3):243–250, June 1996.

[5] Shapiro, J. M. “Embedded Image Coding Using Zerotrees
of Wavelet Coefficients.” IEEE Transactions on Signal
Processing, 41(12):3445–3462, December 1993.

[6] Tsai, M. J., Villasenor, J. D., and Chen, F. “Stack-Run
Image Coding.” IEEE Transactions on Circuits and Sysems
in Video Technology, 6(5):519–521, October 1996.

[7] Villasenor, J., Belzer, B., and Liao, J. “Wavelet Filter
Evaluation for Image Compression.” IEEE Transactions on
Image Processing, 2:1053–1060, August 1995.

