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ABSTRACT
A modified frequency hopping signaling scheme has recently
received a considerable attention by the designers of power line
communication systems because of its insensitivity to frequency-
selective and time-variant attenuation and high level of
interference. In frequency hopping system, the increase of the
data rate without increase of the hop rate is possible only if the
receiver can detect all information-bearing tones simultaneously.
This paper presents the structure of the noncoherent optimum
receiver that minimizes number of required multiplications and
memory locations. The receiver structure is based on
computation of equidistant DFT coefficients. The proposed
demodulator can be used in systems with variable bit rate. With
slightly modified algorithm, rough synchronization can also be
achieved. Comparison of computational complexity confirms
superiority of presented algorithm over direct DFT calculation
and FFT algorithm.

1. INTRODUCTION

Wide spread low voltage electrical power distribution networks
represent an attractive medium for digital communications. The
general opening of telecommunications market and deregulation
of energy market in Europe have enabled the electric utilities to
offer the users some services till recently reserved only for
communication companies, and thereby raised the importance of
reliable and cost effective power line communication system. The
electric utility applications include, e.g., remote meter reading,
distribution automation and demand-side management.

Power lines are, however, heavily stressed with interference from
various sources and attenuation exhibits unpredictable variations.
Such a communication hostile environment calls for a frequency
redundant modulation scheme. It has been shown  in [1] that
frequency hopping (FH) enables reliable power line
communications, even when a rather simple synchronization
scheme based on zero-crossings of the mains voltage is used.

Since oscillators that are used at the transmitter and the receiver
are generally not synchronous and the phase characteristic of the
transmission medium is changed rapidly and in random manner
[1], noncoherent detection has to be employed. Noncoherent
detector computes energy at expected information-bearing
frequencies. Although FH demodulator requires only two
matched-filter-type detectors [1], the possibility to detect all
transmitted frequencies would be advantageous. The data rate
could be increased by applying symbol processing [2], where

symbols are encoded as permutations of hop tones, and more
than one channel can be realized by using orthogonal frequency
division multiplexing (OFDM) [3]. However, this increases
computational complexity. Therefore, the demodulator structure
which reduces number of computational operations would be
useful.

The purpose of this paper is to present optimum-receiver-
equivalent demodulator with reduced number of multiplications.
The principle of the optimum receiver is discussed in section 2.
In section 3, the new receiver structure based on DFT
computation is presented. The computational gain is discussed in
section 4.

2. OPTIMUM RECEIVER

The optimum receiver for M-ary frequency modulated signal
corrupted only by additive white Gaussian noise (AWGN) is
illustrated in Figure 1. The demodulation of the received signal
r(t) is accomplished by using two correlators for each possible
transmitted frequency. The detector computes M envelopes [3]
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(or squared envelopes |rm|
2
), and selects signal with the largest

envelope or squared envelope1. Outputs of the correlators are
sampled at the end of each chip interval. The clock used to
sample correlator outputs must be synchronous with the chip
clock in the transmitter. A synchronization based on zero
crossings of the mains voltage is the simplest solution [1].

In discrete-time system, integrators on Figure 1 are realized as
accumulators. The two reference signals for the correlators are
cosine and sine waveforms with corresponding frequency fm.

Therefore, the outputs from correlators after N input samples are
given by:
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where Ts=1/fs is the sampling period.

                                                          
1 Optimum demodulator for the M-ary frequency shift keying

(M-FSK) signals has the same structure. Therefore, the results
presented in this paper can be applied to M-FSK receiver too.



It is obvious that cosine referenced correlator delivers real part of
one DFT component and sine referenced correlator imaginary
part. The envelope demodulator output represents the absolute
value of DFT components. For computation of DFT components,
computationally more efficient methods can be used.
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Figure 1. Optimum receiver for M-ary frequency
hopping, orthogonal information-bearing tones

3. DFT BASED RECEIVER
At this point, we shall suppose that information-bearing
frequencies fm are equidistant:

fm+1 - fm = fm - fm-1 =∆f,    m=1,...,M                               (4)

and thus uniformly distributed across the whole available
frequency range. This condition is usually inherently fulfilled in
communication systems employing orthogonal information-
bearing tones. Orthogonal frequencies are equidistant, and, from
the point of reducing the error probability, it is advantageous to
use tones distributed across the whole available frequency range
[1], [3].

The second condition is that information-bearing tones are
shifted to the baseband. This can be accomplished by
multiplication with the carrier and low pass filtration or by
bandpass sampling [4].

Frequencies of the mutually orthogonal tones on the chip interval
T are
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Equidistant information-bearing tones, fulfilling the above
conditions (4) and (5), have frequencies
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where L determines distance between tones and k is the offset
from the null frequency. The period L is determined by available
signal bandwidth B
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By applying the Nyquist sampling frequency

f B M fs = = ⋅2 2 ∆                                                    (8)

the components with frequencies fm (6) can be computed as DFT
coefficients: k, L+k, 2L+k, ..., (M-1)L+k. Thus, all possible
orthogonal frequencies are not used.

Generally, the number of required signal samples is the same as
the number of needed Fourier coefficients. However, in order to
reduce the impact of the synchronization error and impulse noise
by averaging, the DFT coefficients are calculated using all
samples in one chip period.

There are methods of operation savings when reduced number of
DFT components is required [5], [6], [7]. None of them is,
however, designed for the case when only equidistant
coefficients have to be computed. Such a method will be
developed in this paper. The only restriction is that the number of
samples N in one chip period is the integer multiple of the
coefficient distance L, i.e.
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This condition is fulfilled for frequencies satisfying equations (6)
and (8). First, we shall develop the algorithm for the simplest
case, which is the most common case in the practice.

A. First frequency is null frequency

This condition means that k=0, i.e. the tone frequencies are
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These frequencies correspond to DFT coefficients with index
mL:
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By applying relation (9), the equation (11) becomes
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The exponential function e
j
mn

P
− 2π

 is now periodic with
period P, and summation (12) can be broken to two summations:
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The realization is illustrated in Figure 2. The inner summation is
realized in the form of accumulators whose content is sampled
and cleared after N input samples (chip period T).
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Figure 2. Realization of the system that computes
equidistant DFT coefficients when first frequency equals
zero (↓P stands for decimator)

Let us examine the properties of the structure shown in Figure 2.
For a larger chip period T1>T:

T
L q

L
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the structure in Figure 2 computes DFT coefficients with index
m⋅(L+q), m=0,...,P-1. The frequencies corresponding to those
coefficients are
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This result means that computed DFT components always
correspond to the same set of physical frequencies, regardless of
the period T. This fact enables the use of this algorithm in
systems with variable chip period, for example in communication
systems with adaptive data rate.

If the accumulators in Figure 2 are substituted with moving-
average-filters of length L, and if their outputs are sampled after
P input samples, the DFT on N=L⋅P input samples will be
computed after each block of P input samples (Figure 3). By

locating the local maximum in the output streams rm (1), the
rough synchronization can be achieved when the mains voltage is

off. The maximal synchronization error is εsync
T

L
=

2
. This

advantage has to be paid by increased number of registers in
moving average circuits.
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Figure 3. Possibility to calculate DFT coefficients on
overlapped blocks of input samples

B. General case (k≠0)

Generally, by selection of tone frequencies, the condition in the
case A (k=0) may not be fulfilled. The required DFT coefficients
are
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Let us break summation (16) to two summations (n=P⋅l+p):

( )

( )
( )( )

R mL k

r Pl p e
j

mL k Pl p

N

l

L

p

P

+ =

= + ⋅
−

+ +

=

−

=

−
∑∑   

2

0

1

0

1 π        (17)

After simple transformations, equation (17) reduces to
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Figure 4. Realization of the system that computes
equidistant DFT coefficients, general case



The realization is illustrated in Figure 4. The inner summation is
recognized as being k-th DFT coefficient calculated on L samples

(DFTL(k) on Figure 4), and the outer summation is P-point DFT.
The general case does not preserve properties of the case A, i.e.
work with adaptive data rate and synchronization are not
possible.

4. NUMBER OF MULTIPLICATIONS

In this section, the number of multiplications in the presented
algorithm is calculated and compared to the number of
multiplications in the direct DFT method and in the Cooley-
Tukey FFT algorithm.

We will assume that all tone frequencies in the available
bandwidth that satisfy condition (6) are used for data
transmission, i.e. P=2M, where M is the number of information-
bearing tones and consequently the number of DFT coefficients
to be calculated. The number of samples in one chip period is N.

By using direct computation of DFT coefficients, the number of
required complex multiplications is

n M Ndir = ⋅                                                                  (19)

By using the above algorithm to compute equidistant DFT
coefficients, case A, the total number of multiplications equals
number of multiplications needed to calculate DFT in P points. If
the FFT algorithm is used, the total number of complex
multiplications is

n M MA = ⋅2 22log                                                  (20)

In the case B, one can see from Figure 4 that L⋅P=N
multiplications are necessary for calculation of P Fourier
components because for each component only L multiplications
are required. Furthermore, P multiplications with complex
exponentials are required and, if the FFT algorithm is used,

P⋅log2P multiplications for P-point DFT computation. If P=2M,
the total number of complex multiplications for the case B is

n N M M MB = + + ⋅2 2 22log                              (21)

Table I shows the comparison of the number of multiplications in
few algorithms. N is the number of samples in one chip period
and M is the number of tone frequencies. The advantage of using
the proposed algorithm to compute equidistant DFT coefficients
is obvious because N is always larger than 2M (N=2ML>2M).

Table I. Comparison of the number of multiplications

Algorithm No. of multiplications

Direct method M⋅N

FFT N⋅log2N

DFT in equidistant points (case A) 2M⋅log2(2M)

DFT in equidistant points (case B) N+2M+2M⋅log2(2M)

5. CONCLUSIONS

An algorithm that calculates equidistant DFT components is
proposed. The computational savings are calculated and it is
shown that this algorithm is computationally more efficient than
FFT or direct method.

The application of presented algorithm in communication
systems employing M-ary frequency modulation schemes is
outlined. The most usual case in practice is the case A, when the
tone frequencies are the integer multiples of the difference
between them. In such a case, the algorithm enables calculation
of DFT coefficients in variable time interval and can be used in
systems with adaptive data rate. Furthermore, the possibility of
symbol synchronization with slightly modified algorithm is
demonstrated, and therefore the system can operate when the
mains voltage is off.
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