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ABSTRACT

We present two “fast” approaches to the NP-hard problem of com-
puting a maximally sparse approximate solution to linear inverse
problems, also known as best subset selection. The first approach,
a heuristic, is an iterative algorithm globally convergent to sparse
elements of any given convex, compact S C R™=. We demon-
strate its effectiveness in bandlimited extrapolation and in sparse
filter design. The second approach is a polynomial-time greedy se-
quential backward elimination algorithm. We show that if A has
full column rank and ¢ is small enough, then the algorithm will
find the sparsest x satifying || Ax — b|| < ¢, if such exists.

1. INTRODUCTION

A vector x € R™= is said to be sparse if a significant fraction of
its components is zero. In this paper, we discuss two techniques to
solve the so called best subset selection problem:

compute the sparsest x satisfying: ||JAx —b|| <e (1)
for some ||.]} and ¢ > 0. This is an important problem arising
naturally in a wide range of scientific and engineering scenarios,
including the regularization if ill-posed problems (where the spar-
sity constraint can be either on the signal itself [1] or on its gradi-
ent [2]), matrix computations 3], statistical modeling [4], function
interpolation [5], and many other signal processing applications
[6, 7]. Whereas optimal algorithms are in general impractical be-
cause the problem is N-P hard [5), its importance calls for heuristic
techniques that work well for specific instances.

The first of our techniques is a recently developed[8, 9], heuristic-

based, iterative algorithm, converging globally to sparse elements
of any given convex, compact S C R™=. We give further the-
oretical results on the convergence properties of this algorithm,
and demonstrate its effectiveness in band-limited extrapolation and
in sparse filter design. The second approach is a polynomial-
time greedy sequential backward elimination algorithm for Prob-
lem (1). We show that if A has full column rank and e is small
enough, then the algorithm will find the sparsest x satisfying || Ax—
b{[, if such exists. Thus, under the stated conditions, the algorithm
provides an optimum solution to the subset selection problem in
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polynomial time. The significance of this result, its relation to
the NP-hardness result, and its applications to statistical decision
problems are discussed.

2. ITERATIVE ALGORITHM

The sparsest element problem of finding the sparsest element x,
of a convex set S C R™=, which is a generalization of the one we
seek to solve, can be stated mathematically as

f(x) =375 v(l=il); )

X, = arg min f(x);

where ¥(t) = 0 for t = 0, 1 else. The first of our techniques
is a fast method for solving a relaxation of Problem (2). This is
achieved by approximating f by £(x) = 3, ¢#(x:) over S, where
¢(r) is a strictly concave, monotone increasing function of |r| and
¢(0) = 0. (As argued there, relaxations with a convex ¢(r), in-
cluding /, relaxations, can yield non-sparse solutions.) The result-
ing non-convex minimization is achieved by the following iterative
algorithm. Let D; : R™= = R*, 1 < i < d, be continuously
differentiable, convex functions with D;(0) = 0V ¢, such that
>, eiDi(x) is a strictly convex function of x for all positive
ei. Define the continuously differentiable, integrable, and strictly
decreasing function p : Rt — [0, a]. Then we have

Sparseness Algorithm A
1. Start from xo € R™~.
2. en;i = p(Di(xr)).
3. Xn41 = arg minxes Yo, €n;i Di(X).
4

. If convergence criterion not met, go to Step 2.

As we show later, the p and D; determine ¢() and have to be
chosen appropriately to yield the desired shape for it. For a differ-
ent interpretation, note that, because p is decreasing, the smaller
D;(xx) are weighted more heavily, and each iterate tends to drive
them further toward zero, encouraging solutions with sparse D;(x).
From this point of view, our approach turns out to be a generaliza-
tion of a similar technique proposed [10] for the case where S is a
linear variety.

A natural choice to make x sparse is d = m; and D;(x) =
z?. As a different example, to solve for an image with a sparse-
edge map, set Di(x) = x’ W;x, where W, is an appropriate
gradient operator.



2.1. Convergence

Let ¢ : [0, 00) > [0, 00) be defined by ¢’(t) = p(t), ¢(0) =0,
and define the cost function

J(x) = Z:’=1¢(D«(x)) ®

We denote hv &
1 y O
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Theorem 1 Let S be a convex and compact subset of R™=, de-
fined by y.\)n) < 0,1 L i < myg, where the y.U are twice {par-

tially) dtﬁerennable everywherein S. Let {xn} be a sequence of
iterates generated by Algorithm A Then,

1. & consists of stationary points of J over S; it contains all
local minima and no saddle points.
2. The sequence J(xy) is non-increasing, and strictly decreas-
ing as long as xn & ®.
3. Any convergent subsequence of {xn} converges to a local
extremum of J over S.
4. If0 € S, the algorithm converges to 0 from all starting
points. If 0 & 8, all fixed points lie on the boundary of S.
. If the local extrema of J over S are isolated, the sequence
{xn} converges.

W

Thus our algorithm is a descent technique: the sequence J(xn)
decreases until convergence. However, Algorithm A has two im-
l)UlldllI. advnuulges over conventional descent-based {cc‘"“ques like
gradient descent. First, as is well known from classical examples,
descent-based algorithms often get trapped in the large, almost flat
regions of the cost function, owing to numerical difficulties. Non-
convexity further aggravates the situation. Instead, at every iterate
in Algorithm A we are minimizing a convex function over aconvex
set — a much easier problem, admitting a single global optimum.
In fact, closed-form (or cheaply computable) solutions for the next
iterate often exist, as in the important cases when § is a subset of
a linear variety, or a hyper-ellipsoid [9]. Even with more involved
set shapes, appropriate choice of the D; (e.g., quadratic) can make
each iteration very easy. For example, when S is a simplex, the
global minimum over $ is computed cheaply using quadratic pro-
gramming. Second, numerical studies and theoretical results (be-

low) for the case when S is a linear variety show that Algorithm A

has much better overall convergence properties than gradient de-

scentor other standard optimization algorithms.

The strongest result of Theorem 1 holds when the extrema of
J are isolated. We now argue that for all practical purposes, this is
always true. In view of Results 1 and 4 of Theorem 1 the set & of

Bwad | - i
fixed points is a subset of those points of § where the isocontours

of J just touch the feasible set S. Suppose the extrema are not all
isolated. Then they must contain a continuum of points (a mani-
foldin R™=). The boundary of § and a single isocontour of J must
coincide on this manifold. But this can only happenin pathological

whisrh tha £ ha acna,
Cases, in which the function P is chosento be esyvﬂaﬂy Ccmpat:=

ble” with §. Normally therefore, unless p is “maliciously” chosen,
the fixed points are isolated.'

Although Theorem 1 does not rule out the possibility of &
including some local maxima of J, the algorithm will never con-

verge to such a point, uniess initialized there. This is so, owing to

IFor example, if S is a simplex, the extrema of J lie on its vertices for

any p satisfying our assumptions. Likewise, if S is an cll:psozd and the D;

chosen to be quadratic, this will always be true unless p is chosen to have
an appropriate linear segment.

the strict descent property 2. Furthermore, even if initialized at a
maximum , it is an unstable fixed point, and any perturbation e g,
due to ﬁnite word-length, would drive the iterates away.

We conclude that except for pathological p, Algorithm A al-
ways converges to a local minimum of J, from any starting point.

The rate of convergence of Algorithm A depends in general
on the shape of the set S and the functions p and D;. We present
an analys1s for the simple but important case when S is a linear
variety § = {x : Ax = b} and D:(x) = z?. Let x* € § and let
A be the sub-matrix of A whose columns correspond to non-zero
elements of x*. Then x* is defined to be irreducible if A° has full
column rank. As its name suggests, an irreducible sparse point x*
can not be replaced by an even sparser solution obtained by setting
certain components of x* to zero.

Theorem2 Let S = {x : Ax = b, |zi] < r} for some large
r, d = m; and Di(x) = z?. Let {xn} be a sequence of iterates
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sparse point of convergence of the algorithm having m non-zero
elements, such that, without loss of generality, 11* # 0¥ 1 <1 <
m, and x** = 0. Then, there exists an integer N and a constant
C\ suchthat foralln > N

—x*Il < ;
xngs — x| < G (m+,“g.-*gm,

-1
By choosing p appropriately, it is possible to control the rate of
convergence. For example, suppose that for some p > 1, p(t) >
1/t? fort > 4, where § > 0O is such that any component z; of
x € S satisfying |z;| < & can be considered 0. The behavior of
p(t) for 0 < ¢t < 4 is chosen to satisfy our assumptions. Then it
readily follows from (4) that provided maXm41<i<m, Ta;; > 6°

Ixnt1 — x*|| < Clixn — x*|IP. )

Thus this choice of p yields convergence
within distance é from the sparse point).

We caution that larger values of p are not necessarily always
better, because they affect not only the convergence rate, but also
the shape of the cost function J and the basin of attraction of the
algorithm. The combined effect is not always easy to predict. In
examples with random initializations we found [9] that faster con-
vergence rate may sometimes offset a decrease in success rate, in

terms of total number of algorithm iterations to first success.

of order 2p (at least to

In this well-known problem, the goal is to recover a vector x hav-
ing spectral support in §I from P, x, where P, is the projection
operator on to the set of vectors band-limited to A C €. In general,
such reconstructions are unstable in the presence of noise, with the
instability increasing as the measure of A decreases. Stable solu-
tion of such problems requires additional pn'or knowledge about
x. In particular, stabie recovery is theoreticaily possibie [1] under
the assumption that x is sparse.

Consider the recovery of a vector x from its convolutiony =
h *+ xy + 7 = A(h)xs + n with a known vector h € R™*,
corrupted by the noise n ~ A(0,0I). A(h) is the correspond-
ing convoiution matrix. it is assumed that x is sparse, with each
component bounded (for example by ¢). Hence, we search for the
maximally sparse solutions in the set

S={zeR™ :JA(h)z-y|’ <¢|z:|<tVi}, (6)



where ¢ is chosen to be a large enough multiple of o2 thatx € S
with high probability.

We demonstrate for the case when h € R is a low-pass
filter with cutoff frequency 0.57 (Fig. 1(b), heavy line). The re-
sulting A(h) has full column rank, but is very ill-conditioned.
In this example, xp € R™*, m; = 30, ¢ = 0.01, ¢t = 5 and
€ = 10(mz + my, — 1)o?, so that the true X, € S with > 99%
probability. The test data y are synthesized with x, with just
6 non-zero elements (Fig 1(a)). Its DTFT (Fig. 1(b), light line)
shows significant content above the cut-off frequency of h.

In 20 trials with different random initializations Algorithm A
always converged to an x with at most 8 non-zero elements. It
converged to x with the correct support in 8 trials, to x with one
spurious element in 7 trials, and to x with two spurious elements
in the remaining 5 trials. Representative examples are shown in
Figs. 1(c)-(e). All the points of convergence of Algorithm A are
reasonable approximations to x;. In contrast, the least-squares
solution (Fig. 1(f)), is neither sparse nor similar to xp.
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Figure 1: Bandlimited extrapolation using the sparseness algo-
rithm. (a) xp. (b) DTFTs of h and x;. (c){(e) Representative
examples of points of convergence of the sparseness algorithm. (f)
Least-squares estimate of x.

2.3. Filter design example

Consider the design of a sparse length-N FIR filter h, for a de-
sired frequency response Hg(w) within given tolerances. This is
an important problem, and a variety of techniques have been pro-
posed for it. In [11] the optimum filter is defined to be the one
minimizing a cost function of the number of non-zero coefficients
and their positions. The actual minimization is by mixed-integer
linear programming. Because this method is globally optimal, it
serves as a useful benchmark for comparison.

A sparse filter approximating H4(w) in a min-max sense to

prescribed tolerances can be designed [9] by the usir;lg Algorithm
A to find the sparsest element of a polytope in R™ defined by
the frequency response specifications. Simulations show that the
algorithm’s performance matches that of the optimal one, needing
just a fraction of the computation.

3. THE BACKWARD GREEDY ALGORITHM
FOR SUBSET SELECTION

For this algorithm we begin with the following formulation of the
subset selection problem. Given a full rank data matrix A €
R™*™ m > n, and an observation vector y € R™, find the
best least-squares solution to Ax = y with at most r non-zero
components. Note that the problem can be alternately viewed as
estimating xo € R™ from y and the prior knowledge that x, is
sparse when 17 € R™ is an unknown noise vector and

y=Axo+n=yo+1. M

3.1. The Backward Greedy Algorithm (BGA)

The well-known “greedy” heuristic of Golub and Van Loan [3]is a
sequential forward selection scheme that is often used to compute
sparse solutions to least-squares problems. The idea is to start by
finding the column of A closest to y, and then add columns one
by one until r columns have been selected, each time adding the
column that gives the largest decrement of the least-squares resid-
ual. Rather than adding columns to the solution one by one, it is
also possible to start with all columns present (i.e., with the com-
plete matrix A)) and remove one column at a time until r columns
are left. That is, the subset selection can also be performed in a
sequential backward fashion. The column that is removed at each
step is chosen to minimize the increment in the least-squares resid-
ual. We call this alternative approach the “backward greedy algo-
rithm” (BGA). To avoid confusion, the standard greedy algorithm
will be called the “forward greedy algorithm.”
Formally, the BGA can be defined as follows.

LetT' = {1,...,n} denote the ordered set of column indices
of A,and E = {£&,... €z}, £ C T, an ordered subset of
T, of cardinality ¢(Z). The “colon” notation A(E, : ) is used to
designate the matrix formed from the columns of A whose indices
are in Z. Denote by

o= min [AE :)z-yl
2ER(E)

the least-squares residual associated with the sparse LS solution of
Ax = y based on the =-indexed subset of columns of A. The
BGA for subset selection is initialized by taking = = I'. Elements
are then removed from = one by one by repeating the iteration

E«E\{k}: 4" = argmin p(E\ {k}) ®)

until ¢(Z) = r. The column k* that is removed at each iteration is
chosen to minimize the increment in the least-squares residual p.
Once the last iteration has been performed, the sparse least-squares
solution associated with the column indices left in = is computed.
The subset of indices obtained at the last iteration of the BGA and
the associated sparse least-squares solution will be denoted by =,
and x, respectively.



3.2. Implementation and Computational Cost

The forward greedy algorithm is usually implemented by means of
a QR algorithm for least-squares solution of linear systems [3, 5].
Similarly, the BGA (8) can be efficiently implemented by combin-
ing the QR algorithm with a column-deletion QR downdating step
based on Givens rotations [12) performed greedily. A description
of such implementation can be found in [13].

Because the BGA starts with n columns and removes them
one by one until only r columns are left, if r is small with respect
to n, the computational cost of the BGA will be higher than that
of the forward greedy algorithm. Conversely, if r is close to n, the
cost of the backward algorithm is smaller than that of the forward
algorithm. Indeed, in the case of the QR-based implementation,
it can shown [13] that the computational cost is roughly O((m +
(n — r)n)n?). For comparison, the cost of the QR-based forward
greedy algorithm is O(mnr) [3].

3.3. Optimality of the Backward Greedy Algorithm

The main result of this paper, presented in Theorem 3, is that, for
any full rank matrix A and any sparse vector Xo, there exists a
bound on the perturbation 7 that guarantees that the BGA will
select the correct subset of components, i.e., =, = Zo. This means
that the BGA is optimal for linear inverse problems solved with a
sparsity constraint, at least for small “noise levels.”

Theorem 3 ([13]) For any full column rank matrix A and for any
sparse vector o with r non-zero components (or, alternately, for
any yo = Axo), there exists § > 0 such that |ly — yol| < ¢
guarantees that the backward greedy algorithm for solving Ax =
y will select the correct subset of components Eo. Furthermore,
the corresponding sparse least-squares solution X , satisfies ||x. —
%Xo|| € 8/0min[A(Ze, : )] where amin[A] denotes the smallest
singular value of A.

Our specific motivation for studying the BGA for subset se-
lection arises from an estimation and classification problem in sta-
tistical signal processing [6]. In this application, the vector y is a
random vector converging with probability one to yo. We are in-
terested in the properties of the estimate of Zo and xo obtained by
the BGA. Note that for the application described in [6], finding Zo
is at least as important as finding xo. As Corollary 1 establishes,
the estimates =, and x, obtained by the BGA are strongly con-
sistent. That is, they converge to the true values Zo and zo with
probability one.

Corollary 1 Ify is a strongly consistent estimator of yo, i.e., if
y = Yo wp.l, thenZE, = Zo and X, — Xo wp.l.

The BGA can be easily modified to solve Problem (1). The
modified version of the algorithm simply needs a new stopping
criterion. Instead of stopping at a predefined number r of compo-
nents, it must now be stopped for the smallest r satisfying p(Z,) <
¢. For this version of the algorithm, we have the following

Corollary 2 ({13]) Given A and 'y, there exists a bound § > 0
such that, if € < &, then the backward greedy algorithm (8) pro-
vides the optimal solution to Problem (1).

The implication of Corollary 2 is clear: under the stated con-
ditions, it is possible to find the optimum solution to Problem 1
in polynomial time. The contradiction with Natarajan’s result [5]

on NP-hardness is only apparent. Note that if y = yo, the sys-
tem of equation Ax = y has an exact solution with some of its
components equal to zero. Thus, if y = yo, it is not necessary
to perform any subset selection; solving Ax = yo and checking
for the non-zero components yields directly the correct sparse so-
lution x,. Thus, wheny = yo, the problem admits obviously a
polynomial-time solution. Similarly, Corollary 2 states that here
exists 4 such that the optimal sparse solution to Problem 1 is found
by the BGA in polynomial time if ¢ < . However, the bound é
is not given directly; it is a complex function of A and y. Further-
more, computing ¢ is not a polynomial time operation {13].
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