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ABSTRACT 

We present two “fast” approaches to the NP-hard problem of com- 
puting a maximally sparse approximate solution to linear inverse 
problems, also known as best subset selection. The first approach, 
a heuristic, is an iterative algorithm globally convergent to sparse 
elements of any given convex, compact S C Wmr. We demon- 
strate its effectiveness in bandlimited extrapolation and in sparse 
filter design. The second approach is a polynomial-time greedy se- 
quential backward elimination algorithm. We show that if A has 
full column rank and c is small enough, then the algorithm will 
find the sparsest x satifying l]Ax - bll 5 c. if such exists. 

1. INTRODUCTION 

Avectorx E R”X is said to be sparse if a significant fraction of 
its components is zero. In this paper, we discuss two techniques to 
solve the so called best subset selection problem: 

compute the sparsest x satisfying: IlAx - b]l 5 c (1) 

for some 11.11 and c > 0. This is an important problem arising 
naturally in a wide range of scientific and engineering scenarios, 
including the ttgularization if ill-posed problems (where the spar- 
shy constraint can be either on the signal itself [l] or on its gradi- 
ent [2]), matrix computations [3], statistical modeling [4], function 
interpolation [S], and many other signal processing applications 
[6,7]. Whereas optimal algorithms are in general impractical be- 
cause the problem is N-P hard [5], its importance calls for heuristic 
techniques that work well for specific instances. 

The first of our techniques is a recently developed [8,9], heuristic- 
based, iterative algorithm, converging globally to sparse elements 
of any given convex, compact S C iFI”=. We give further the- 
oretical results on the convergence properties of this algorithm, 
and demonstrate its effectiveness in band-limited extrapolation and 
in sparse filter design. The second approach is a polynomial- 
time greedy sequential backward elimination algorithm for Prob- 
lem (1). We show that if A has full column rank and e is small 
enough, then the algorithm will find the sparsest x satisfying IlAx- 
bll, if such exists. Thus, under the stated conditions, the algorithm 
provides an optimum solution to the subset selection problem in 
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polynomial time. The significance of this result, its relation to 
the NP-hardness result, and its applications to statistical decision 
problems are discussed. 

2. ITERATIVE ALGORITHM 

The sparsest element problem of finding the sparsest element xs 
of a convex set S C W”=, which is a generalization of the one we 
seek to solve, can be stated mathematically as 

where v!(t) = 0 for t = 0, 1 else. The first of our techniques 
is a fast method for solving a relaxation of Problem (2). This is 
achieved by approximating f by t(x) = xi b(zi) over S. where 
d(r) is a strictly concave, monotone increasing function of It-1 and 
4(O) = 0. (As argued there, relaxations with a convex d(r), in- 
cluding it relaxations, can yield non-sparse solutions.) The result- 
ing non-convex minimization is achieved by the following iterative 
algorithm. Let Di : IL?“= e W+, 1 < i < d, be continuously 
differentiable, convex functions with E;(O) = 0 V i, such that 
Cf=, ei D;(x) is a strictly convex function of x for all positive 
ei. Define the continuously differentiable, integrable, and strictly 
decreasing function p : Wt ti [0, a]. Then we have 

Sparseness Algorithm A 

Start from xc E lR”=. 

e,;i = P (Di(Xn)). 

xn+l = mgm&s Cf=, en;iDi(x). 

If convergence criterion not met, go to Step 2. 

As we show later, the p and Di determine 4() and have to be 
chosen appropriately to yield the desired shape for it. For a differ- 
ent interpretation, note that, because p is decreasing, the smaller 
Di (X,) are weighted more heavily, and each iterate tends to drive 
them further toward zero, encouraging solutions with sparse Di (x) . 
From this point of view, our approach turns out to be a generaliza- 
tion of a similar technique proposed [lo] for the case where S is a 
linear variety. 

A natural choice to make x sparse is d = m, and Di(X) = 
zcf . As a different example, to solve for an image with a sparse- 
edge map, set Di(x) = XTWiX, where Wi is an appropriate 
gradient operator. 



2.1. Convergence 

Let 4 : [0, XJ) e [0, oc) be defined by 4’(t) = p(t), 4(O) = 0, 
and define the cost function 

J(X) = CP=lNDiCx)) 

We denote by d the set of fixed points of A 

(3) 

‘I’Iworem 1 Let S be a convex and compact subset o~W”‘~, de- 
fined by qi(X) 5 0, 1 5 i 5 m,, where the qi() are twice (par- 
tially) differentiable everywhere in S. Let {xn} be a sequence of 
iterates generated by Algorithm A Then, 

1. 

2. 

3. 

4. 

5. 

6 consists of stationary points of J over S; it contains all 
local minima and no saddle points. 

The sequence J(x,,) is non-increasing, andstrictly decreas- 
inga.slongasxn e@. 

Any convergent subsequence of {x,,) converges to a local 
extremum of J over S. 

If 0 E S, the algorithm converges to 0 from all starting 
points. rf0 $Z S, allfixedpoints lie on the boundary of S. 

If the local extrema of J over S are isolated, the sequence 
{xn} converges. 

Thus our algorithm is a descent technique: the sequence J(x,,) 
decreases until convergence. However, Algorithm A has two im- 
portant advantages over conventional descent-based techniques like 
gradient descent. First, as is well known from classical examples, 
descent-based algorithms often get trapped in the huge, almost flat 
regions of the cost function, owing to numerical difficulties. Non- 
convexity further aggravates the situation. Instead, at every iterate 
in Algorithm A we are minimizing a convex function over a convex 
set - a much easier problem, admitting a single global optimum. 
In fact, closed-form (or cheaply computable) solutions for the next 
iterate often exist, as in the important cases when S is a subset of 
a linear variety, or a hyper-ellipsoid [9]. Even with more involved 
set shapes, appropriate choice of the Di (e.g., quadratic) can make 
each iteration very easy. For example, when S is a simplex, the 
global minimum over S is computed cheaply using quadratic pro- 
gramming. Second, numerical studies and theoretical results (be- 
low) for the case when S is a linear variety show that Algorithm A 
has much better overall convergence properties than gradient de- 
scentor_ other standard optimization algorithms. 

The strongest result of Theorem 1 holds when the extrema of 
J are isolated. We now argue that for all practical purposes, this is 
always true. In view of Results 1 and 4 of Theorem 1 the set 8 of 
fixed points is a subset of those points of S where the isocontours 
of J just touch the feasible set S. Suppose the extrema are not all 
isolated. Then they must contain a continuum of points (a mani- 
fold in R”=). The boundary of S and a single isocontour of J must 
coincide on this manifold. But this can only happen in pathological 
cases, in which the function p is chosen to be especially “compati- 
ble” with S. Normally therefore, unless p is “maliciously”chosen, 
the fixed points are isolated.’ 

Although Theorem 1 does not rule out the possibility of ‘25 
including some local maxima of J, the algorithm will never con- 
verge to such a point, unless initialized there. This is so, owing to 

‘For example, if S is a simplex, the extrema of J lie on its vertices for 
any p satisfying OUT assumptions. Likewise, if S is an ellipsoid and the Di 
chosen to be quadratic, this will always be true unless p is chosen to have 
an appropriate linear segment. 

the strict descent property 2. Furthermore, even if initialized at a 
maximum, it is an unstable fixed point, and any perturbation e.g., 
due to finite word-length, would drive the iterates away. 

We conclude that except for pathological p, Algorithm A al- 
ways converges to a local minimum of J, from any starting point. 

The rate of convergence of Algorithm A depends in general 
on the shape of the set S and the functions p and Di. We present 
an analysis for the simple but important case when S is a linear 
varietyS={x:Ax=b}andDi(x)=z~.Letx*ESandlet 
A0 be the sub-matrix of A whose columns correspond to non-zero 
elements of x*. Then x* is defined to be irreducible if A0 has full 
column rank. As its name suggests, an irreducible sparse point x* 
can not be replaced by an even sparser solution obtained by setting 
certain components of x* to zero. 

Theorem 2 Let S = {X : Ax = b, ]ziJ < I-} for some large 
r, d = m, and D;(x) = zf. Let {xn} be a sequence of iterates 
ofAlgorithm A Let x* = [(x’*)~ (x~*)~]’ be a an irreducible 
sparse point of convergence of the algorithm having m non-zero 
ebements, such that, without loss of generality, x,‘* # 0 V 1 5 i 5 
m, and x2* = 0. Then, there exists an integer N and a constant 
Cl such thatfor all n > N 

( > 
-1 

IIxn+1 - x*11 I Cl m+ggmz P(xki) . (4) 

By choosing p appropriately, it is possible to control the rate of 
convergence. For example, suppose that for some p 2 1, p(t) 1 
l/tP for t 2 6, where 6 > 0 is such that any component xi of 
x E S satisfying ]zi] < 6 can be considered 0. The behavior of 
p(t) for 0 5 t < 6 is chosen to satisfy our assumptions. Then it 
readily follows from (4) that provided max,+t<i<,, z’,;i 2 J2 -- 

IIxnt1 - x*11 5 Cllxn - x*IIzp. (5) 

Thus this choice of p yields convergence of order 2p (at least to 
within distance 6 from the sparse point). 

We caution that larger values of p are not necessarily always 
better, because they affect not only the convergence rate, but also 
the shape of the cost function J and the basin of attraction of the 
algorithm. The combined effect is not always easy to predict. In 
examples with random initializations we found [9] that faster con- 
vergence rate may sometimes offset a decrease in success rate, in 
terms of total number of algorithm iterations to first success. 

2.2. Bandlimited Extrapolation 

In this well-known problem, the goal is to recover a vector x hav- 
ing spectral support in 62 from PAX, where PA is the projection 
operator on to the set of vectors band-limited to A C f2. In general, 
such reconstructions are unstable in the presence of noise, with the 
instability increasing as the measure of A decreases. Stable solu- 
tion of such problems requites additional prior knowledge about 
x. In particular, stable recovery is theoretically possible [ 11 under 
the assumption that x is sparse. 

Consider the recovery of a vector x from its convolution y = 
h*Xb+I) = A(h)xt, + q with a known vector h E R”h, 
corrupted by the noise r.r N n/(0, ~1). A(h) is the correspond- 
ing convolution matrix. It is assumed that x is sparse, with each 
component bounded (for example by t). Hence, we search for the 
maximally sparse solutions in the set 

s = (2 E R”’ : IIA(h)Z - ~11’ 5 er lzil 5 t V i}f (6) 



l .vhere e is chosen to be a large enough multiple of u2 that x E S 
with high probability. 

We demonstrate for the case when h E lR3’ is a low-pass 
filter with cutoff frequency 0.5a (Fig. I(b), heavy line). The re- 
sulting A(h) has full column rank, but is very ill-conditioned. 
In this example, xb E R”=, m, = 30, d = 0.01. t = 5 and 
e = lo(m, + mh - l)u2, so that the true xb E s with > 99% 
probability. The test data y are synthesized with xb with just 
6 non-zero elements (Fig l(a)). Its DTFT (Fig. l(b), light line) 
shows significant content above the cut-off frequency of h. 

In 20 trials with different random initializations Algorithm A 
always converged to an x with at most 8 non-zero elements. It 
converged to x with the correct support in 8 trials, to x with one 
spurious element in 7 trials, and to x with two spurious elements 
in the remaining 5 trials. Representative examples are shown in 
Figs. l(c)-(e). All the points of convergence of Algorithm A are 
reasonable approximations to xb. In contrast, the least-squares 
SOhtiOn (Fig. l(f)), is neither sparse nor similar to xb. 
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Figure 1: Bandlimited extrapolation using the sparseness algo- 
rithm. (a) xb. (b) DTFTs of h and xb. (c)-(e) Representative 
examples of points of convergence of the sparseness algorithm. (f) 
Least-squares estimate of x. 

2.3. Filter design example 

Consider the design of a sparse length-N FIR filter h, for a de- 
sired frequency response Hd(w) within given tolerances. This is 
an important problem, and a variety of techniques have been pro- 
posed for it. In [l l] the optimum filter is defined to be the one 
minimizing a cost function of the number of non-zero coefficients 
and their positions. The actual minimization is by mixed-integer 
linear programming. Because this method is globally optimal, it 
serves as a useful benchmark for comparison. 

A sparse filter approximating Hd(w) in a min-max sense to 

prescribed tolerances can be designed [9] by the usin Algorithm 
A to find the sparsest element of a polytope in IR defined by 
the frequency response specifications. Simulations show that the 
algorithm’s performance matches that of the optimal one, needing 
just a fraction of the computation. 

3. THE BACKWARD GREEDY ALGORITHM 
FOR SUBSET SELECTlON 

For this algorithm we begin with the following formulation of the 
subset selection problem. Given a full rank data matrix A E 
w ““(“, m 1 n, and an observation vector y E IR”, find the 
best least-squares solution to Ax = y with at most r non-zero 
components. Note that the problem can be alternately viewed as 
estimating x0 E R” from y and the prior knowledge that x0 is 
sparse when r~ E W” is an unknown noise vector and 

y=Axo+q=yo+tl. (7) 

3.1. The Backward Greedy Algorithm @GA) 

The well-known “greedy” heuristic of Golub and Van Loan [3] is a 
sequential forward selection scheme that is often used to compute 
sparse solutions to least-squares problems. The idea is to start by 
finding the column of A closest to y, and then add columns one 
by one until r columns have been selected, each time adding the 
column that gives the largest decrement of the least-squares resid- 
ual. Rather than adding columns to the solution one by one, it is 
also possible to start with all columns present (i.e., with the com- 
plete matrix A) and remove one column at a time until r columns 
are left. That is. the subset selection can also be performed in a 
sequential backward fashion. The column that is removed at each 
step is chosen to minimize the increment in the least-squares resid- 
ual. We call this alternative approach the “backward greedy algo- 
rithm” (BGA). To avoid confusion, the standard greedy algorithm 
will be called the “forward greedy algorithm.” 

Formally, the BGA can be defined as follows. 
Let r = {l,... ( n) denote the ordered set of column indices 
of A, and E = {<I,. . . ,&(z)}, Z C I’, an ordered subset of 
r, of cardinality c(E). The “colon” notation A(Z, : ) is used to 
designate the matrix formed from the columns of A whose indices 
are in E. Denote by 

P(E) = m$$ llA(Z : )z - ~112 

the least-squares residual associated with the sparse LS solution of 
Ax = y based on the E-indexed subset of columns of A. The 
BGA for subset selection is initialized by taking Z = r. Elements 
are then removed from E one by one by repeating the iteration 

until c(Z) = r. The column k’ that is removed at each iteration is 
chosen to minimize the increment in the least-squares residual p. 
Once the last iteration has been performed, the sparse least-squares 
solution associated with the column indices left in Z is computed. 
The subset of indices obtained at the last iteration of the BGA and 
the associated sparse least-squares solution will be denoted by 2, 
and x. respectively. 



3.2. Implementation and Computational Cost 

The forward greedy algorithm is usually implemented by means of 
a QR algorithm for least-squares solution of linear systems [3,5]. 
Similarly, the BGA (8) can be efficiently implemented by combin- 
ing the QR algorithm with a columndeletion QR downdating step 
based on Givens rotations [ 121 performed greedily. A description 
of such implementation can be found in [ 131. 

Because the BGA starts with n columns and removes them 
one by one until only r columns are left, if r is small with respect 
to n, the computational cost of the BGA will be higher than that 
of the forward greedy algorithm. Conversely, if r is close to n, the 
cost of the backward algorithm is smaller than that of the forward 
algorithm. Indeed, in the case of the QR-based implementation, 
it can shown [ 131 that the computational cost is roughly 0( (m + 

(n - r)n)ra’). For comparison, the cost of the QR-based forward 
greedy algorithm is O(mnr) [3]. 

3.3. OptImaIIty of the Backward Greedy Algorithm 

The main result of this paper, presented in Theorem 3, is that, for 
any full rank matrix A and any sparse vector x0, there exists a 
bound on the perturbation so that guarantees that the BGA will 
select the correct subset of components, i.e., Z, = Ea. This means 
that the BGA is optimal for linear inverse problems solved with a 
spar&y constraint, at least for small “noise levels.” 

Theorem 3 ([13]) For anyfill column rank matrix A andfor any 
sparse vector x0 with r non-zero components (or. alternately, for 
any yo = Axe), there exists 6 > 0 such that ]]y - yc ]I < 6 
guarantees that the backward greedy algorithm for solving Ax = 
y will select the correct subset of components Zo. Furthermore, 
the corresponding sparse least-squaressolution xa satisfies ]]x. - 
~011 < C/a,i,[A(Eo, : )] where cmin[A] denotes the smallest 
singular value of A. 

Our specific motivation for studying the BGA for subset se- 
lection arises from an estimation and classification problem in sta- 
tistical signal processing [6]. In this application, the vector y is a 
random vector converging with probability one to yo. We are in- 
terested in the properties of the estimate of BO and x0 obtained by 
the BGA. Note that for the application described in [6], finding ZO 
is at least as impottant as finding x0. As Corollary 1 establishes, 
the estimates Z:. and X, obtained by the BGA are strongly con- 
sistent. That is, they converge to the true values BO and x0 with 
probability one. 

Corollary 1 If y is a strongly consistent estimator of yo, i.e., if 
y -r yo w.p.1. then E, + zo andx. -+ x0 w.p.1. 

The BGA can be easily modified to solve Problem (1). The 
modified version of the algorithm simply needs a new stopping 
criterion. Instead of stopping at a predefined number r of compo- 
nents, it must now be stopped for the smallest r satisfying p(E:.) < 
c. For this version of the algorithm, we have the following 

Corollary 2 ([13]) Given A and y. there exists a bound 6 > 0 
such that, .if e < 6, then the backward greedy algorithm (8) pm- 
vides the optimal solution to Pmbletn (1). 

The implication of Corollary 2 is clear: under the stated con- 
ditions, it is possible to find the optimum solution to Problem 1 
in polynomial time. The contradiction with Natarajan’s result [5] 

on NP-hardness is only apparent. Note that if y = ya, the sys- 
tem of equation Ax = y has an exact solution with some of its 
components equal to zero. Thus, if y = y0, it is not necessary 
to perform any subset selection; solving Ax = yo and checking 
for the non-zero components yields directly the correct sparse so- 
lution xs. Thus, when y = yo , the problem admits obviously a 
polynomial-time solution. Similarly, Corollary 2 states that here 
exists 6 such that the optimal sparse solution to Problem 1 is found 
by the BGA in polynomial time if L < 6. However, the bound 6 
is not given directly; it is a complex function of A and y. Further- 
more, computing 6 is not a polynomial time operation [ 131. 

4. REFERENCES 

[I] D. L. Donoho, “Superresolution via sparsity constraints,” 
SIAM J. Math. Anal., vol. 23, pp. 1309-l 33 1, Sep. 1992. 

[2] A. H. Delaney and Y. Bresler, “Globally convergent edge pre- 
serving regularization: An application to limited angle tomog- 
raphy,” IEEE Trans. Image Process.,, vol.7 Feb. 1998. 

[3] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns 
Hopkins Univ. Press, Baltimore, ML, 2nd ed., 1989. 

[4] A. J. Miller. Subset Selection in Regression. Chapman and 
Hall, London, UK, 1990. 

[5] B. K. Natarajan, “Sparse approximate solutions to linear sys- 
tems”, SIAM J. Camp., vol. 24, pp. 227-234,1995. 

[6] C. Couvreur and Y. Bresler. Dictionary-based decomposition 
of linear mixtures of Gaussian processes. Pmt. ICASSP, pp. 
2519-2522, May 1996. 

[7] M. Nafie, M. Ali, and A. H. Tewfik. Optimal susbet selection 
for adaptive signal representation. Pmt. ICASSP, May 1996. 

[8] G. Harikumar and Y. Btesler, “A new algorithm for computing 
sparse solutions to linear inverse problems,” Pmt. ICASSP, 
May 1996, vol. III, pp. 1331-1334. 

[9] G. Harikumar and Y. Bresler, “Optimum sparse approxima- 
tions: a new class of algorithms,” submitted, 1997. 

[lo] I. Gorodnitsky and B. D. Rao, “Sparse signal reconstructions 
from limited data using FOCUSS: A m-weighted minimum 
norm algorithm,” IEEE Trans. Signal Process., pp. 600-616, 
March 1997. 

[ 1 l] J. T. Lim. W. J. Oh, and Y. H. Lee, “Design of nonuniformly 
spaced linear phase FIR filters using mixed integer linear pro- 
gramming,” IEEE Tmns. Signal Process., pp. 123-126, Jan. 
1996. 

[12] A. Bjbrck, H. Park, and L. Eldtn, “‘Accurate downdating 
of least squares solutions”, SLAM J. Mat. An. Appl., vol. 15, 
pp. 549-568,1994. 

[13] C. Couvreur and Y. Bresler, “Optimalihy of the Backward 
Greedy Algorithm for the Subset Selection Problem”, submit- 
ted SIAM J. Mat. An. Appl., 1998. 


