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ABSTRACT 

In this paper, we apply Basis Pursuit, an atomic decom- 
position technique, for spectrum estimation. Compared 

with several modern time series methods, our approach 

can greatly reduce the problem of power leakage; it is 
able to superresolve; moreover, it works well with noisy 
and unevenly sampled signals. We present experiments 
on bizarrely spaced radial velocity data from one of the 

newly-discoved extrasolar planetary systems. 

1. INTRODUCTION 

Spectrum analysis has been widely used to detect and 
characterize periodic behavior present in signals. By ex- 
amining the peaks in the spectrum, one can locate the 

frequencies of the periodic components. Therefore, it is es- 
sential to obtain good estimates of the spectrum. Over the 
past decades, researchers have developed various tools for 
estimating spectra, ranging from the traditional Fourier 
analysis, to modern time series methods such as such 

as multi-taper spectral analysis and wavelet denoising of 

power spectra. In this paper, we address 4 important is- 
sues in spectrum estimation: 
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Figure 1. Power leakage: analyzing a pure sine wave 

l Power Leakage. This is a common problem in spec- 

trum estimation. Figure 1 (a) shows a pure sine 
wave, with its frequency not at the Fourier frequen- 

cies; panel (b) shows the idea spectrum: a impulse 
response at the correct frequency; panel (c) shows 
the power leakage in the Fourier spectrum: there is 

energy not only at the correct frequency, but also at 

the neighboring frequencies; such structure is often 

called a sidelobe in spectrum analysis. 
l Superresolution. Sometimes we would like to resolve 

periodic components with their frequencies very close 
to each other. However, because of the power leak- 

age problem, most spectrum estimates cannot resolve 
such fine structures. Indeed, linear methods can re- 

solve up to the so-called Reyleigh limit. Figure 2 (a) 

shows the TwinSine signal, which consists of two sine 
waves with close frequencies; panel (c) shows there is 

only one peak in the Fourier spectrum. 
l Noisy Observations. We often observe signals cont- 

aminated with noise. The Dower sDectrum is well- 

known to be noisy; having noise in the observation 

makes the power spectrum even more noisy. Thus 
we would like to obtain spectrum estimates robust 

against noise. 
l Uneven Sampling. Normally we work with evenly 

sampled signals. However, in astronomy and other 

sciences, one often has to cope with unevely sampled 
signals. Figure 5 (a) h s ows a bizarrely spaced radial 
velocity dataset from a newly-discovered extrasolar 

planetary system; these data are from the pioneer- 
ing planetary detection project by Marcy and Butler 

[2, lo]. By examining the spectrum, one can figure 

out the orbital periods of the stars. Uneven spac- 

ing complicates the estimation and interpretation of 
the spectrum; the example shown here is particularly 

challenging because not only is the sampling uneven, 
but there is large and systematic evolution of the 

spacing. 
Recently there has been great interest in representing 

signals with overcomplete dictionaries. Rather than the 
traditional orthogonal representations such as the Fourier 

analysis, atomic decomposition techniques such as Basis 
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Pursuit [l] have been proposed to represent signals as lin- 
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Figure 2. Superresolution: analyzing the TwinSine signal 

ear combinations of atoms from the overcomplete dictio- 
nary. Since overcomplete dictionaries are often richer than 

orthogonal bases, these methods can often obtain repre- 
sentations with high resolution. 

In this paper, we apply Basis Pursuit with a specially 

designed dictionary for spectrum estimation; the dictio- 

nary includes overcomplete cosine and sine bases, and the 
Dirac basis. Our approach can greatly reduce the problem 
of power leakage; it is able to superresolve; moreover, it 
works well with noisy and unevenly sampled signals. 

This paper is organized as follows: section 2 describes 

the existing methods for spectrum estimation; section 
3 describes our approach via Basis Pursuit; section 4 

presents experiments with the signals discussed in this 
section. 

2. EXISTING METHODS 

In this section, we review several modern time series 
methods, for both evenly and unevenly sampled signals. 
Let t = ti,.. .,t, be the sample times and x(t) = 

z(h), . . . , z(tn) be the signals sampled at t. 

2.1. Fourier Analysis 

The traditional method of spectrum analysis is to estimate 

the power spectrum directly from the Fourier transform 

of the signal: 

I(w) = p+J)12. (1) 

where F(zu) is the Fourier transform. 

However, for unevenly sampled signals, estimation of 

the power spectrum directly from the Fourier transform 

of the signal encounters many difficulties: (1) is not 
well-behaved statistically. One popular method is the 

Lomb-Scargle algorithm, which modifies the simple direct 

Fourier sum to make the statistics of the resulting power 

IF( well-behaved [9]. Another scheme is tapering: by 
multiplying the signal by a window function before taking 
the Fourier transform, it reduces the spectral leakage at 

the expense of a slight broadening of the main lobes [7]. 

Slepian and Thomson [8] proposed to find the optimum 
window function by a mathematical optimization. While 
this optimization problem has a unique solution, it actu- 

ally leads to a number of window functions nearly as good 
as the solution. The multitaper spectrum estimate [8] is 
the average of the Fourier spectra of the signal windowed 

by these functions. 

2.2. Wavelet Shrinkage 

Recently, wavelet shrinkage [5] has emerged as a useful 
tool for recovering signals from noisy observations. By 

transforming into the wavelet domain, most of the signal 
becomes concentrated in a few big coefficients whereas the 
small coefficients are mainly noise. Thus by thresholding 
the wavelet coefficients and transforming back to the time 
domain, one can remove noise without sacrificing reso- 

lution. Wavelet shrinkage can be realized in O(N) time, 

since there are fast algorithms for wavelet transforms. Not 
only does Wavelet shrinkage work well in practice, but also 
it is proven to be essentially optimal for a variety of signal 

classes [5]. 
Gao [6] has studied denoising of power spectrum esti- 

mates by wavelet shrinkage. The power spectrum is well- 

known to be noisy and have a peculiar statistical distri- 
bution; however its logarithm is better behaved. Thus 

one can apply wavelet shrinkage on the logarithm of an 
estimate of the power spectrum. 

For unevenly sampled noisy observations, Scargle [lo] 

proposed to first compute the the unequally-spaced Haar 
wavelet transform and apply the shrinkage operator, 
then compute the ordinary (evenly-sampled) inverse Haar 

wavelet transform. This yields an evenly spaced recon- 

struction, on which regular spectrum analysis can be per- 

formed. 

3. BASIS PURSUIT 

Basis Pursuit (BP) is a principle for decomposing a sig- 

nal into an optimal superposition of dictionary elements, 
where optimal means having the smallest I’ norm of coef- 

ficients among all such decompositions: 

min]]a]]isubject to +CX = s . (2) 

where 9 is a matrix whose columns are dictionary ele- 

ments. This optimization principle leads to decomposi- 
tions that can be very sparse; it can stably super-resolve in 

ways that other methods usually cannot. Utilizing mod- 

ern time-frequency dictionaries, Basis Pursuit can find 

good representations for various signals. The optimiza- 
tion (2) can solved via linear programming [l]. 

We design a special overcomplete dictionary for spec- 

trum estimation. It consists of 3 components: 



Discrete Cosine Dictionary. Let ! be a whole num- 
ber; the e-fold cosine dictionary is the collection of all 

cosines with wk = 2alc/@), Ic = 0,. . . , !n/2: 

{cos(wkt : i = 0,. . . , en/n} 

Discrete Sine Dictionary. Let L be a whole number; 
the e-fold cosine dictionary is the collection of all sines 

with wk = 27rk/(!n), k = 1,. . . , in/2 - 1: 

{sin(wkt : i = 1,. . . , h/2 - 1) 

The Dirac dictionary is simply the collection of wave- 
forms that are zero except in one point: 

{l{,,~ : i = l,.. ., N} 

We choose the discrete cosine dictionary and the discrete 
sine dictionary because they are able to characterize peri- 
odic signals; we include the Dirac dictionary to compen- 

sate the noise present in the observation. 
We perform Basis Pursuit with this dictionary. Let & 

be the Basis Pursuit solution; the power spectrum can be 
estimated from the coefficients associated with the cosine 

components &:“, and the coefficients associated with the 

sine components c%:i,” : 

I(Wk) = Iii:“,“I” + I&f;“I” . (3) 
Here are the advantages of our approach: 

a Power Leakage. Basis Pursuit tends to find sparse 

representations, because of the nature of minizing the 
e1 norm; i.e. it tries to represent a signal with fewest 
coefficients as possible. Thus, Basis Pursuit seldom 

uses all the frequencies in the neighborhood of the 

true frequency. Figure 1 (d) shows the Basis Pursuit 

spectrum with 1 = 1, i.e. without over-sampling the 

frequency domain in our dictionary. Clearly, there is 
much less power leakage, compared with the Fourier 
spectrum in panel (c). 

l SuperresoZulion. I1 methods, along with maximum 

entropy methods, are well-know to be able to super- 
resolve [4]. Moreover, our dictionary automatically 

defines a finer resolution in the frequency domain: 
the bigger the overcompleteness e is, the finer the 
frequency resolution will be. By increasing the fre- 
quency resolution, one can push down the resolution 

limit of our method. Figure 2 (c) shows the Basis 

Pursuit spectrum obtained with ! = 3: it indicates 
that two peaks are present; however, the position of 
the right peak is slightly off. Panel (d) displays the 
Basis Pursuit spectrum obtained with L = 10: not 

only are the peaks better separated, but also they 

are positioned closer to the true frequencies. 
l Noisy Observations. For noisy observations, Basis 

Pursuit finds a solution with coefficients in sines and 
cosines, which represents the periodic components in 

the signal, and coefficients in Diracs, which represent 

mainly the noise in the signal. 
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Figure 3. Analyzing the noisy TwinSine signal, SNR = 2 

l Uneven Sampling. Our dictionary handles uneven 

sampling naturally: the dictionary elements are gen- 
erated as cosines and sines on the sampled time loca- 

tions. 

We comment that for evenly sampled observations, 
fast algorithms are available for the discrete cosine and 

discrete sine transforms; thus the analysis operator QTs 

and the synthesis operator aTa can be computed in 

0( N log(N)) time. This is important when N is large, 

since the Basis Pursuit implementation requires a series 
of such operations. However, for unevenly sampled obser- 

vations, it is not clear that fast algorithms exist for the 

discrete cosine and discrete sine transforms. Fortunately, 

in the case of the Star dataset, the sample size is small 
(55), and the Basis Pursuit solution can still be obtained 

in reasonable time. 

4. EXPERIMENTS 

In this section, we present experiments on noisy and un- 

evenly sampled signals. 

4.1. TwinSine 

Figure 3 (b) h s ows the noisy TwinSine signal at signal to 

noise ratio 2. Panel (c) shows the Fourier spectrum; there 

is only one peak with wide decaying tails; the position of 

the peak is away from the two true frequencies, which are 
indicated by the two dotted lines. Panel (d) shows the 
Basis Pursuit spectrum with L = 10. Clearly it indicates 

two peaks; the positions of the peaks are very close to the 

true frequencies. 

4.2. Synthetic Star Data 

Figure 4 (a) displays a synthetic dataset for the Kepler or- 

bit found in [3]; the computed radial velocity was sampled 

at the same times as the actual data in Figure 5 (a) (this 
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Figure 4. Analyzing the synthetic radial velocity data 

dataset was constructed by Scargle [lo]). The exact spec- 
trum is indicated by the frequency impulses in Panel (b). 

Scargle [lo] t’ es imated the spectrum by first multiplying 
the signal by a taper, then computing the Lomb-Scargle 

periodogram; the resulting spectrum is shown in panel 

(c) (same as Figure 2 (a) in [lo]); the dotted lines indi- 
cate the positions of the true harmonics. Clearly there 

are peaks associated with the true harmonics; however, 
the spectrum appears noisy, with many other spurious 

peaks which are not present in the signal. [lo] consid- 

ered these already reasonably good, specially in view of 
the peculiarity of the sampling. Panel (d) shows the Ba- 

sis Pursuit spectrum with ! = 10; the first 3 harmonics 

are clearly indicated at the right locations, with nearly no 

power leakage. 

4.3. Star Data 

Figure 5 (a) displays the real radial velocity data. Panel 

(b) displays the Lomb-Scargle periodogram, obtained the 
same way as Figure 5 (c) ( same as Figure 3 in [lo]). Scar- 
gle [lo] used the wavelet method to denoise and interpo- 
late the data, then computed the regular Fourier spec- 

trum. Panel (c) displays the resulting spectrum (same 

as Figure 5 in [lo]). (c) appears less noisy than (b); 
both reveal a dominant harmonics and possibly a few 
others. Panel (d) displays the Basis Pursuit spectrum 
with 1 = 10. The first 3 harmonics are exact multiples of 

w = .0014 : {i x w : i = 1,3,5}. The other peaks have 

rather different locations than the peaks in (b) and (c). 
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Figure 5. Analyzing the real radial velocity data 
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