
INTERACTIVE DSP EDUCATION USING JAVA
Y. Cheneval: L. Bulmelli*, P. Prandoni: J. Kovacevict, M. Vetterli’

l = LCAV-EPFL, CH-1015 Lausanne, Switzerland

ABSTRACT
In this paper, we argue that Java is a natural language to develop
interactive teaching material that can be shared and distributed
widely. Unlike any other programming language or platform we
know, Java development is justified because of its almost uni-
versal acceptance. We develop a Block Diagram (BD) based
approach that allows to develop interactive and downloadable
signal processing laboratories. As an example, we show how
specific experiments for a DSP class, as well as for an advanced
course on wavelets have been developed.

The article first explains why the Java language has been cho-
sen, and then describes what has been realized today. Finally,
we show how the BD representation can be efficiently used for
the development of a wavelet theory course. It is shown that
only a few simple blocks are sufficient for creating many didac-
tic programs. This can be seen as an a posteriori justification of
the BD model.

1. Platform and programming language for
Web-based teaching

1.1 State-of-the-art

In the context of Computer Based Education (CBE), the Web
has been mostly used as a method of disseminating static infor-
mation or as a support medium to traditional books. This is due
mainly to the lack of a Web programming standard for designing
truly interactive courses. The arrival of the Java language has
allowed to design programs (applets) that can be executed on
the student’s computer. Many Java applets have been developed
that demonstrate standard DSP algorithms [4]. In these applets,
the interaction with the user is based on previously existing
Matlab (or other packages) demos [6][8] (the student is using
sliders to modify parameters and buttons to perform some ac-
tions), and therefore represents mostly converting code to Java.

Although this interaction mode is easy to use and represents
what a researcher needs, it has several drawbacks. From the
educational standpoint, the student does not know in detail how
the algorithm works since he is seeing only input and output
data. In this case, the algorithm is like a black box, whose be-
havior can be determined by monitoring input and output data.
From the programming standpoint, there is an obvious advan-
tage in writing code in Java directly; most algorithms can be
decomposed in several phases; some may be reusable, like for
instance all the I/O part and the graphical output that is similar
for many algorithms. Moreover, these tasks are usually the most
time-consuming and the least interesting to develop.

1.2 The Block Diagram model

In this article, we propose a model based on a Block Diagram
(BD) representation. In this model, the algorithm is described as

’ = Bell Labs, Lucent Technologies, Murray Hill, NJ

a set of blocks joined together, where basically the output of a
block is linked to the input of the next.

The system allows to describe a BD-based algorithm that repre-
sents the flow of data through operators. An algorithm is de-
composed into basic blocks (e.g. lirst get the data, then take an
Fm and finally display the spectrum). The applet is created by
building its BD model. When run, each block is highlighted as
the data flows through it, so that the student knows what is tak-
ing place at every moment. The student can interactively place
probes on the block diagram to monitor any signal coming out
of any block.

A typical algorithm is depicted in Figure 1. Input data is fetched
or generated, then the algorithm is run (processing). Many itera-
tions can be necessary to reach the correct result and the user
may change input data for computing a new result.

Input data Processing

r____-----------______________

I

I

I
I

Figure 1: Typical setup for a data processing algo-
rithm running in a loop

Figure 2 shows the BD representation of an algorithm based on
the abstract setup of Figure 1. This representation uses the data
flow model.

Figure 2: BD model for a data processing algorithm

Each box represents a component that possesses a processing
capability. In this example, the leftmost box generates data for
the middle box, whose results are displayed by the rightmost
box. The data passes through the wires connecting the compo-
nents.

The BD diagram is directly available so that the user can display
and interact with it. For example, the user can attach probes to
any wire to monitor the data that passes through it.

1.3 Suitability of the Block Diagram model

This system addresses the two drawbacks we mentioned above.
First, the student can have a better understanding of the inner
parts of the algorithm by immediately viewing how it has been
implemented (In Figure 2 for instance, the middle component
could be “opened” to give an inside view of the inner workings
of the algorithm). It gives him the freedom to view intermediate
signals that would not be available on the standard applet dis-
play. Second, the decomposition of the algorithm in block dia-
gram allows to code each block as a separate entity. Different
algorithms may then be created by assembling components that
have already been developed for another algorithm. For exam-
ple, graphical output and I/O can be easily reused.

Previous work [2] has shown that this model is well suited to
data processing. Moreover, experience (derived from other pro-
gramming languages) has shown that the interesting part (the
algorithm) is taking approximately 15% of the total development
time, whereas 85% is spent to develop the Graphical User In-
terface (GUI), data display and I/O parts. It is therefore clear
that providing tools to take care of the 85% of the code is a great
advantage for minimizing applications development time.

1.4 The resources mechanism

The BD model provides excellent reusability by clearly splitting
the algorithm into its different parts. Since each block must be
often customized for different uses (e.g. sampling rate changes
for a downsampler block), we need a mechanism to easily mod-
ify internal variables inside each block. This can be achieved
using resources. The idea is to allow the designer to export
(publish) some variables that can be accessed from outside the
module. A resource interactor can then be used to manipulate
the resources (Figure 3).

Figure 3: Resource interactor

The resources provide a flexible way of exporting parameters.
However, modification of resources must be handled properly,
so that the module can take appropriate actions when the value
has been modified. We have established the following protocol
for resource modification:

Suppose that a resource has been modified in the resource inter-
actor. Once the user validates the change:

a) The resource interactor asks the owner of the resource if the
change is permitted, proposing the new value.

b) The owner examines the change. It can veto the change for
various reasons (e.g. value out of range). If it is vetoed, the
change is not allowed. If it is allowed, the change is applied
and the owner can take the appropriate steps to validate the
change (e.g. recompute a formula that includes the modi-
tied value).

Experience has shown that these mechanisms can be imple-
mented in a very efficient way. The process of adding or re-
moving resources is simple from a programming point of view.

1.5 Features of Java in a CBE framework

There are advantages and disadvantages to using Java for
teaching purposes. Here are the most important ones:

a) Java (coupled with HTML) allows us to have an interactive
and dynamic presentation running on the host computer, there-
fore diminishing time-consuming connections between the
server and the host which would prevent the necessary interac-
tivity.

b) Since the application is running locally, it uses the local proc-
essing power. Most computers have enough power today to run
the kind of applications that are needed in a reasonable amount
of time. Moreover, this local vs. centralized computation model
is very useful in the case of a full classroom performing the
same tasks at the same time. In such a case, a centralized com-
puting resource would be a bottleneck for performance.

c) The machine independence feature of Java allows us to de-
velop the application once and run it on all Java-compatible
platforms (in practice, any platform such as Unix, Macintosh or
MS Windows).

d) The disadvantages of Java are mostly due to the youth of the
language. Security and performance problems are the ones that
matter the most. These problems are being looked into by the
designers of the Java language and should be solved in the near
future.

2. Project status

Based on the BD model (including the resource mechanism) and
an existing implementation developed with the C language [2], a
set of basic primitives has been developed. These primitives can
be separated broadly into: a) handling of data formats and I/O,
b) graphical data display and c) DSP operators. They form the
core from which we will write the block diagrams.

2.1 Data formats and I/O

Numerous possibilities exist to generate or acquire a signal
(from a range, random data, list, file, . ..). We have developed a
Signal class that represents a discrete signal on which it is
possible to apply standard functions to create complex input,
like in Listing 1:

Signal vl = new SignalO,
v2 = new Signal();

v1.range(0,6.28/40,6.28+(6.28/40));

Listing 1: Working with the Signal class

We can also use the IEEE SP Signal Database 151. Data can be
directly loaded as an input signal by any applet that is using our
set of components. Resulting data can be stored back in the da-
tabase if needed.

2.2 Graphical Data Display

In order to display computation results, a Figure class has
been developed. This class can handle the display of many data
types, such as ID, 2D and 3D functions and images. Automatic
or constrained axis handling is possible, as well as adding a title
or text annotation. Using the overloaded plot method, the user
can display any supported data type. We show the result of it-
erations of the 4-tap Dauchechies filter in Figure 4. The menu
(Zoom Level) on the bottom of the figure is a context menu
corresponding to the data type passed to the plot function.

All events (e.g. interactive zoom selection, mouse clicks) are
handled internally in the class and are completely transparent to
the user. Some routines for creating buttons, text areas, . to
coontrol the resources of the algorithm are also available.

0.24

-024

0 0.6 1.2 1.8 2.4

Figure 4: Iterations of the 4-tap Daubechies filter

2.3 DSP Operators

Inspired by the environment provided in Matlab, we have de-
cided to use a class hierarchy of DSP operators as close as pos-
sible (in terms of semantic and nomenclature) to the one used in
Matlab.

As a result, the bottom level regroups the basic operations such
as convolution, rate operator, FFT. Higher level operators (one-
dimensional and two-dimensional N-channel filter banks and
wavelet transforms) are based on it (Figure 5). For example, the
code to iterate the Daubechies 4-tap filter would be:

public class Algorithm extends Operator (

public Signal compute(int n)
(// Compute n iterations of the filter
Signal DaubechieslT = new SignalO;

Daubechies4T.data(O.4830,0.8365, 0.2241.-0.1294);
IteratedFilter = DaubechiesBT.copyO;

for (int i = 0; i < n; i++) (.
IteratedFilter = upsample(IteratedFilter, 2);
IteratedFilter = conv(Daubechies4T.

IteratedFilter);

1

return IteratedFilter:

Listing 2: Java code describing iterations of a 4-tap
Daubechies filter

I Signal IteratedFilter = new SignalO;

The main program will declare instances of algorithms and drive

their interactions or sequence of executions. The goal of this
class architecture is to separate the development of DSP code
and GUI. The user will progressively build a set of algorithms of
his own and use them as Java code external to the DSP envi-
ronment.

DSP Environmenl

Figure 5: Example of object hierarchy

Based on these classes, some applets have already been written.
They are grouped in an interactive DSP book [7] available on-
line. Selected examples include the Gibbs phenomenon, an echo
cancellation (Figure 6) and a 2D Wavelet Transform applets.

Fliter Taos Inst. MSE

Figure 6: The echo cancellation applet

The student can change the different parameters. A theoretical
explanation of each phenomenon is available in the Web docu-

3. Interactive course on wavelets and sub-
band coding

3.1 The course

We now illustrate the BD concepts using examples from a
wavelet course we are developing. For this course, 12 chapters
have been chosen, each one featuring an introduction text in
HTML plus one (or more) didactic applet(s) that demonstrates
the subject in practice. Each applet is designed using our block
diagram decomposition system, thus allowing the student to
understand and interact with all the blocks that are part of the
applet. Here is a list of the applets that are being developed.

I. Laplacian and Gaussian image pyramids
2. Filter banks, orthogonal, non-orthogonal, linear-phase
3. Regularity & 2-scale equation wavelets
4. Surface Approximation and computer graphics
5. Approximation theory: piecewise polynomial functions
6. Audio compression, segmentation and Musicam
7. Wavelet compression of images and video
8. Wavelet denoising of images
9. Communications: Multitone modulation/embedded QAM
IO. Best bases and time frequency representations
I I. Multiresolution motion estimation
12. Quantization in frames

This course is being designed for graduate students and interac-
tive usage. As explained earlier, the basic assumption is that
many features of the I2 applets will be the same: They will all
need to display signals (ID and 2D such as images), load/save
input signals (I/O), use a GUI, react to events generated by the
user (e.g. press of a mouse button), . All the applets are de-
signed using the BD model described above. We must therefore
identify the key components that are needed for this task.

3.2 The key components

To understand the basic concepts from the theory and applica-
tion of wavelets and subband coding [9], we need a few basic
primitives from multi-rate signal processing, namely:

a) convolution generators (filters)
b) downsamplers

c) upsamplers

These blocks need certain parameters (e.g. impulse response for
convolution, sampling rate changes). Using these three blocks,
any filter can be computed, that is, scaling functions and wave-
lets can be obtained.

For compression examples, we need:

a) standard linear transforms (e.g. DCT, DWT)
b) quantizers (e.g. dead zone scalar quantizers)
c) entropy coders (e.g. Huffman codes).

In addition to these elementary processing blocks, we need
probes that can display time and frequency views of the data
being processed. The above blocks are mostly implemented. For
a current state of the project, see:
http://lcavwww.cpfl.ch/javaprojcct/

4. Conclusion & Perspectives

The BD model is a very flexible tool that can be further ex-
panded to provide a fully cooperative model where each block
could be directly fetched from the server in the network. The BD
model has not yet been completely implemented in Java al-
though a fully functional model is existing in C. Some applets
and basic blocks do exist already. The goal is to have a set of
blocks generic enough so that they can be combined to easily
create different algorithms.

One further goal of having a complete set of Java applets for a
specific topic such as “wavelets and subband coding” is to im-
plement what is called “reproducible research” [3][1]. In that
framework, a research paper has to be complemented by all the
experimental data used in producing the results. The reader of
the paper can actually rerun all experiments to verify the results,
but also try the methods on his own data. The problem is now
very similar to interactive teaching: one needs downloadable
and portable software and thus, Java is a natural choice. An
ambitious but worthwhile aim is that availability of a critical
mass of applets will potentially allow reproducible research to
be implemented relatively easily.

It is to be noted that certain communities are close to presenting
their results in a form that allows easy comparison (e.g. the dis-
crete optimization community has large sets of standard prob-
lems that are used as benchmarks).

While signal processing is moving towards better benchmarking,
it is still a fact that many compression papers describe results
that are difficult to reproduce by another researcher. It is our
claim that such a state of affairs actually slows progress in a
given field. Therefore, a potential benefit of our Java platform is
to create an environment where reproducible research can be-
come a reality.

5. REFERENCES

[I] Buckheit J., Donoho D., WaveLab and Reproducible Re-
search , To Appear, Wavelets and Statistics, Anestis Anto-
niadis, ed. Springer-Verlag Lecture Notes, 1995.

[2] Cheneval Y., PackUB, un environnement de de’veloppe-
ment modulaire pour la crkation visuelle d’applicutions
conviviales, PhD dissertation, LAMI-EPFL, 1997.

[3] Claerbout J., Hypertext Document about Reproducible
Research, http://sepwww.stanfr,rd.edu/.

[4] Guo H., Odeguard J. E., Burrus C. S., Teaching Wavelets
with Java on the Information Superhighway, http://www-
dsp.rice.edu/cdu/wavelct/.

[5] IEEE SPIB Database, http://spib.rice.edu/spib.html.
[6] McClellan J., Schafer R., Using Multimedia to Teach the

Theory of Digital Multimedia Signals, To appear, IEEE Tr.
On Education, 1997.

[7] Prandoni P., Balmelli L., An Interactive DSP book,
http://lcavwww.eptl.ch/-prandoni/dspbook.html.

[S] Rahkila M., Karjalainen M., An Interactive DSP Tutorial
on the Web, ICASSP97 V3, p. 2253.

[9] Vetterli M., Kovacevic J., Wavelets and subband coding,
Prentice-Hall. 1995.

