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AHSTRACT 

In this paper, WC study performance measures for designing 
two-band perfect reconstruction (PR) linear phase (LP) fil- 
ter bank. Based on these performance metrics, WC formulate 
rhe design problem as a nonlinear constrained optimization 
problem, whcrc some metrics such a.. stopband cnegy have 
closed form, but the others like transition width do nol. Our 
formulation allows us to search for designs that improve 
over the existing designs 161. More important, given uscr- 
specified performance bounds such as maximal transition 
width, we *are able to design filter banks if solutions exist, 
and trade-off among different performance metrics can be 
easily achieved. Finally, many experimental results show 
feasibility and efficiency of our filter bank design method. 

1. INTRODUCTION 

Digital filter banks [S] have been used in many engincer- 
ing lields and applications such as audio and image coding. 
Their major advantage in processing signals and images is 
that they constitute a multirate information system. 

There are two major approaches to design filter banks. 
In optimization-based methods, the design problem has been 
formulated as a multi-objective nonlinea.roptimi;l;ltion prob- 
lem, whose form can be application- and filter-dependent, 
and then converted into a single-objective optimization prob- 
lem and solved by existing optimization methods, such as 
gradient dcsccnt, Lagrange multiplier, quasi-Newton, simu- 
latcd annealing, and genetics based methods. On the other 
hand, filter-bank design problems can also bc solved using 
nonoptimization based algorithms, which include spectral 
facmrization and heuristic methods. These methods gencr- 
ally do not continue to find better designs once a suboptimal 
design has been found. 

In this paper, we study a two-band FIR filter bank, which 
consists of an analysis system followed by a synthesis sys- 
tem. The analysis (ilters /f,,(z) and 11, (2 j decompose input 
signal S(z), and the synrhcsis filters (lo( ;) and (,‘I (z) rc- 
constructs output J? (z) from the subband signals. Choosing 
(;()(z) = W,(:j and (i,(z) = -‘Llio(-z) to cancel out 
aliasing term related to ,Y(-z j, we obtain the relationship 
between input S (2) and .Y (.z) as follows 

Thcrcfore, filter bank design problem becomes estimalc ol 
two filter paramctcrs Ilo( 7). j and II l (II) that satisfy some per- 
formance metrics. 

2. PERFORMANCE MEASURES 

In this section, WC identify filter bank design objectives and 
show how to formulate and evaluate them. The major con- 
tribution is that we arc able to accurately measure sornc per- 
formances such as transition width, which is not studied in 
existing work 1.51. Since all these performance metrics arc 
involved in our optimization process, given user-specified 
performance bounds, we can find solutions which are im- 
possible for existing work. 

The performance metrics of the filter bank have to two 
parts. The first part rclatcs to the overall filter bank re- 
sponse, and the second to the individual filters 

2.1. Pcrlhrmance metrics t’or overall tiller bank 

To achieve both PR and LP propcrtics in the filter bank, it is 
required that the sum of the filter lengths is a multiple of 4, 
i.e. ;‘I’~, + ;2:, = 4k, where iV(, and N, arc lengths of filters 
Ho( :) and 11, (z), respectively, and then the system delay 
of the filter bank is (No + :Vl)/:! - 1. 

Only two types of nontrivial filter bank systcrns have 
both PR and LP features [4]. As illustration in this paper, WC 



only discuss the case where both filters Hu( Z) and f-11 (2) 
have even length, ffa( Z) is symmetric, and Hi(z) is anti- 
symmetric. Hence, two filters need to be estimated. One is 
low-pass filter Ho(z) with parameters ho = {h”(n), r1 = 
0, 1, . . . , Iv”/2 - 1 }, and the other is high-pass filer HI(Z) 
withparametershl = {hl(n)!n=0,1:...,N1/2- 1) 

The PR condition [ 1] can be enforced by a set of equality 
constraints, 

Iv0 + II’, 
2i-1 

2 
= C(-1)%(2i - 1 - /c)hi(k) (2) 

k=O 

where i = 1,2,. . .: v, and Q(z) = 1 if I = 0 and 0 
otherwise. 

2.2. Performance metrics for individual filters 

Performance metrics for individual filters include stopband 
energy E, (ho) and E,, (II i ), stopband ripple 6, (ho) and 6, (/I I ), 
passband energy E,, (ho) and Ep (h i ), passband ripple 15, (ho) 
and ~$,(/li), and transition width r(ho) and r(hi). Figure 1 
illustrates their definitions. 

I IH( 

/- 

Figure 1: Performance metrics of individual filters. 

Note that Figure 1 refers to a low-pass filter. For a high- 
pass filter Hi(z), we use the same method to calculate its 
performance metrics on its mirror Hi(-.z). Hence, it is 
enough to illustrate our computation on low-pass filter Ho. 

For given filter parameters ho, both stopband and pass- 
band energy E, (ho) and Ep ( ho) depend on cut-off frequency 
w, (ho) and wp (ha), which vary with filter parameters ho. 
This means that existing work that uses predefined values 
w, and wp does not give precise performance metrics, and 
thus it can not ensure satisfaction of user-defined perfor- 
mance bounds. 

In addition, stopband and passband ripples 6, (ho) and 
6, (ho), and transition width r( ho) do not have closed form 
equations. We have to evaluate all of them using numerical 
methods. 

The stopband ripple 6, (ho) is estimated in the frequency 
range [7r/2, ~1 using the absolute value IHo 1 of frequency 
response HO(W). First, we uniformly sample the frequency 

range from n/2 to K. Frequency intervals that contain a lo- 
cal maxima are found based on the sample points. Within 
each interval, we apply Newton’s method to precisely lo- 
cate the local maximum points. When Newton’s method 
does not converge after a fixed number of iterations, Golden 
search is used to reduce the interval and restart Newton’s 
method. Among all these local maxima, the largest one is 
the stopband ripple 6, (1~0). In a similar way, the passband 
ripple 6, (ho) is found in frequency range of [o, r/2]. 

Using the stopband ripple 6, (/lo), we are able to find 
stopband cut-off frequency w, (ho), which is the first in E 
[7r/2, ~1 such that ]l-lo(w)] = 6, (ho). This is done by first 
finding w,(ho) using sampling, and then refining it with 
combination of Newton’s method and bisection search. Sim- 
ilarly, the passband cut-off frequency w,, (ho) is the first pi E 
[O, n/2] such that IHo( = 1 - 6,(ho). 

With estimated cut-off frequencies w, (1~~) and w,, (ho), 
we can easily calculate transition width r( /ro) = w, (ho) - 
LJ~ (ho), stopband energy E, (/zo), as well as passband en- 
ergy E,(ho). Note that, when we calculate these perfor- 
mance metrics, the main operation that may cause lower 
precision is the sum in IHe(w In order to maintain at 
high precision, we employ Kahan’s summation formula. 

3. CONSTRAINED OPTIMIZATION 
FORMULATION 

Obviously, designing PR LP filter bank has multiple objec- 
tives for both overall filter bank and individual filters: (a) 
satisfy PR condition (2), ic. equality constraints; (b) min- 
imize stopband energy E,(ho) and E,*(h,); (c) minimize 
stopband ripple 6, (he) and ~5~ (h 1); (d) minimize passband 
energy Ep (ho) and Ep (hi ); (e) minimize passband ripple 

&(ho) and I,; (0 minimize transition width r( ho) and 
T(hl). 

It can be formulated either as a multi-objective uncon- 
strained optimization or as a single-objective constrained 
optimization. In a multi-objective formulation, a possible 
way is to optimize the design with respect to a subset of the 
performance measures, for example, 

PR condition and rnin E,(ho) and E, (hl) (3) 

which is adopted by most existing work [5]. Unfortunately, 
optimal solutions to the simplified optimization problem are 
not necessarily optimal solutions to the original problem, 
and performance measures not included in the formulation 
are compromised. 

In general, optimal solutions of a multi-objective prob- 
lem form a Pareto optimalfrontier such that one solution on 
this frontier is not dominated by another. One approach to 
find a point on the Pareto frontier is to optimize a weighted 
sum of all the objectives. This approach has difficulty when 
Pareto frontier points of certain characteristics are desired, 



such as those with certain transition width. Different com- 
binations of weights must be tested by trial and error until 
a desired filter is found. When the desired characteristics 
are difficult to satisfy, trial and error is not effective in find- 
ing feasible designs. In this case, constrained formulation 
should be used instead. 

In constrained formulation, constraints arc defined with 
respect to a reference design or user-spccihed performance 
bounds. Constraint-based methods have been applied to de- 
sign lilter banks in both the frequency [ 11 and the time do- 
mains ]3]. In all these designs, most performance metrics 
like transition width and ripples are not evaluated, and en- 
ergy using predefined cut-off frequencies is not accurate. 
Therefore, given a performance bound, none of them can be 
used to design a required filter bank. 

We formulate the filter bank design in the most general 
form as a constrained nonlinear optimization problem, in 
the sense that all the performance metrics are evaluated pre- 
cisely based on their definitions, as follows, 

Minimize EPR(~o,~I) (4) 
Sthjcject to PR conditiorl 

@*(ho) 5 ko E,(fll) i E..l 

E,(ho) 5 &O f&(fll) i -&I 

6, (ho) 5 &o &(fl,) 5 $4 

bp(ho) I $0 &(h) I &I 

T(ho) 5 fo T(hl) 5 $1 

where fiso! &i, &o, kp~r~s~,~s~~&~~&~r ?o, and ?l are 
user-specified performance bounds. The objective function 
EPR(~o, Iti) is defined as a squared sum of all the equality 
constraints in PR condition (2). Hence, the minimum of the 
objective function is equivalent to PR condition. 

The performance metrics cover different ranges of val- 
ues, for example, the stopband energy is of order 10m4, 
the ripples of order 10S2, and the transition width of or- 
der 10-i. In order to balance their effects on optimization, 
we choose to normalize them and obtain 

Minimize EpR(h0, hl) (5) 
Subject to PR condition 

E,(ho)/&o - 1 5 0 E.&)/&I - 1 5 0 

E,(ho)/&o - 1 5 0 E,&)/f$pl - 1 L o 

&(f~O)/LO - 1 5 0 &(h)/& - 1 i 0 

$(ho)/&o - 1 5 0 &$+&l - 15 o 

T(hO)/~~ - 1 5 0 ,r(h,)/?., - 1 5 0 

If the performance bounds are computed from the best 
known design and we tighten some of them, it is possible 
for us to improve the solution. For a simpler case of QMF 
filter bank design, we have already shown some improved 
solutions and efficiency of our algorithm 161. 

4. LAGRANGE MULTIPLIER METHODS 

To solve the constrained optimization problem (5), WC USC 
a Lagrange multiplier method [2], where inequality con- 
straints are transformed into equality constraints using slack 
variables. In the Lagrangian formulation, a local minimum 
in a feasible region is a saddle poinf at which the objec- 
tive function is at a local minimum and the weighted sum of 
the constraints is at a local maximum. By using this prop- 
erty, saddle points can be found by local search methods that 
perform gradient descents in the original-variable space and 
gradient ascents in the Lagrange-variable space. 

The Lagrange multiplier algorithm requires first-order 
derivatives to compute gradients. For closed-form formulas 
such as stopband energy E, (ho), it is easy to derive their 
analytical forms of derivatives. But for nonclosed-form for- 
mula such as transition width 7(ho), we use finite difference 
methods to approximate their derivatives. 

Because the formulated filter bank problem is highly 
nonlinear constrained optimization problem, the Lagrange 
multiplier method may get trapped into a local minimum 
like most local strategies such as gradient descent and New- 
ton’s method. To escape from the local minimum, global 
search approaches can be utilized, for instance, covering 
methods, interval methods, simulated annealing and genetic 
algorithms. But they take much longer time than local search 
methods, and thus tradeoff between quality of solution and 
computational time has to be examined. 

The goal of this paper is to show how our formulation 
and evaluation can be used to design the filter bank given 
user-specified performance bounds and how to do trade-off 
among different performance metrics. We will not study 
performance of different global search algorithms. 

5. EXPERIMENTAL RESULTS 

Starting from an initial point 
( 

ht=‘), hit=‘) , we set ini- 
> 

tial values of the Lagrange multipliers to be zero, and solve 
the dynamic equations of the Lagrangian function by using 
LSODE i until it converges. 

Here, we only describe one example to show how our 
formulation improves existing results and makes tradeoff 
among different performance metrics. We use example 2.3 [I] 
as our baseline where NO = 16 and Ni = 28. 

To design such filters, the authors [l] use the fixed fre- 
quency cut-offs, i.e. w,(ho) = 0.67r, wp(ho) = 0.447~, 
w,(hl) = O.Grr, and wp(hl) = 0.4n. However, according 
to definition of the frequency cut-off, these values should 
vary with the filter parameters. Even for the reported solu- 
tion, the actual cut-offs should be w, (ho) = 0.623~, ~IU,, (1~0) 
= 0.419a, w,(hi) = 0.620n, and wp(hi) = 0.4657r. This 

*ISODE is a solver for first-order ordinary differential equations, a 

public-domain package available from http://www.netlib.org. 



Table 1: Improved result for 95% passband ripple. Table 3: Trade-off for stopband ripple and passband energy. 

Table 2: Improved result for 90% passband ripple. Table 4: Trade-off for reduced transition width. 

means performance metrics of stopband and passband en- 
ergy are not accurately calculated. In addition, performance 
metrics of ripples and transition widths are not measured. 

Using the solution given by [l], we first compute per- 
formance metrics, and set them as our performance bounds 
fiso, &.,I, I!I? .@ 8 s a b ? and ?i in our con- po1 plr so1 $11 po1 plr 09 

strained formulation (5). In the following, our solutions arc 
normalized by these bounds, meaning that the value less 
than one is better. 

In the first set of experiments, we tighten performance 
bounds of passband ripples to show improved results. To 
obtain the design with 95% of the passband ripples of both 
filters ho and hl, we set performance bounds as O.95$,o and 
0.95&i, and solve it using the Lagrange multiplier method. 
All the constraints are satisfied, and the performance met- 
rics of our solution is given in Table 1. We improve both 
passband ripples and energy. The performance bounds of 
passband ripples are further tightened to 90%, and we find 
a solution shown in Table 2. 

In the next set of experiments, we want to study how 
to do trade-off among different performance metrics, where 
some metrics are relaxed while some are tightened. Table 3 
shows the result that we tighten stopband ripples to 90% and 
relax passband energy by 5%. 

Table 4 shows another trade-off result for reduced tran- 
sition width. Obviously, transition width is a critical per- 
formance metric. ‘lightening it little bit may cause large 
degradation of other performance metrics like passband en- 
ergy. 

As a conclusion, two points have to be emphasized. First, 
the reason why the desired filter bank can be designed given 
performance bounds is that we accurately evaluate these 
performance metrics, and formulate it as a constrained opti- 

mization problem. Second, involving all these metrics makes 
the design problem more difficult to solve due to high non- 
linear and non closed form constraints. Therefore, the solu- 
tions we obtained are just local search results, which can bc 
further improved using some global search method. 
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