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ABSTRACT

In this paper, we study performance measures for designing
two-band perfect reconstruction (PR) linear phase (LP) fil-
ter bank. Based on these performance metrics, we formulate
the design problem as a nonlinear constrained optimization
problem, where some metrics such as stopband cnergy have
closed form, but the others like transition width do not. Our
formulation allows us to search for designs that improve
over the existing designs [6]. More important, given uscr-
specified performance bounds such as maximal transition
width, we are ablc to design filter banks if solutions exist,
and tradc-off among different performance metrics can be
casily achieved. Finally, many expcrimental results show
feasibility and efficiency of our filter bank design method.

1. INTRODUCTION

Digital filter banks [5] have been used in many engincer-
ing fields and applications such as audio and image coding.
Their major advantage in processing signals and images is
that they constitute a multirate information system.

There are two major approaches to design filter banks.
In optimization-based methods, the design problem has been
formulated as a multi-objective nonlinear optimization prob-
lem, whose form can be application- and filter-dependent,
and then converted into a single-objective optimization prob-
lem and solved by existing optimization methods, such as
gradient descent, Lagrange multiplier, quasi-Newton, simu-
lated annealing, and genctics based methods. On the other
hand, filter-bank design problems can also be solved using
nonoptimization based algorithms, which include spectral
factorization and heuristic methods. These methods gener-
ally do not continue to find better designs once a suboptimal
design has been found.
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In this paper, we study a two-band FIR filier bank, which
consists of an analysis system followed by a synthesis sys-
tem, The analysis filters Ho(z) and I,{z) decompose input
signal X (2}, and the synthesis filters (74(z) and (/y{z) re-
constructs output X (z) from the subband signals. Choosing
Go(z) = 2H (=) and (51(z) = —2Hy(—=z) to cancel out
aliasing term related to X' {—=z), we obtain the relationship
between input X (z) and X (z) as follows

X(z) = [Ho(z)Hi{=2) = Ha(=2)H, ()] X (z) (N

Therefore, filter bank design problem becomes estimate of
two filter parameters fig(n) and hy(n) that satisfy some per-
formance metrics.

2. PERFORMANCE MEASURES

In this section, we identify filter bank design objectives and
show how to formulate and evaluate them. The major con-
tribution is that we arc able L0 accurately measure some per-
formances such as transition width, which is not studied in
cxisting work [5]. Since all these performance metrics arc
involved in our optimization process, given user-specilied
performance bounds, we can find solutions which are im-
possible for existing work.

The performance metrics of the filter bank have to two
parts. The first part relates to the overall filter bank re-
sponse, and the second to the individual filters

2.1. Performance metrics for overall filter bank

To achieve both PR and LP propertics in the filter bank, it iy
requircd that the sum of the filter lengths is a multiple of 4,
i.e, Ny + Ny = 4k, where Ny and V| arc lengths of filters
Ho(z) and [{,(z), respectively, and then the system delay
of the filter bank is (N + Ny)/2 - 1.

Only two types of nontrivial filter bank systems have
both PR and LP features [4]. As iilustrationin this paper, we



only discuss the case where both filters HO( ) and H,(z)
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The PR condition [ 1] can be enforced by a set of equality
constraints,
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2.2, Performance metrics for individual filters

Performance metrics for individual filters include stopband

energy F,(ho) and E,(h;), stopband ripple &, (ho) and 8, (h ),

pas.;;;md energy E, ( ho) and E,(h,), passband ripple 6, (ho)
and é,(h,), and transilion width 7(ho) and 7{h;). Figure 1
illustrates their definitions.
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Figure 1: Performance metrics of individual filters.
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Note that F1g1 or a high-

pass filter H,(z ), we use the same method to calculatc its
performance metrics on its mirror H{(—z). Hence, it is
enough to illustrate our computation on low-pass filter Hy.
For given filter parameters ho, both stopband and pass-
band energy E, (ho) and E,(ho) depend on cut-off frequency
ws(ho) and wy,(he), which vary with filter parameters ho.
This means that existing work that uses predefined vaiues
w, and w, does not give precise performance metrics, and
thus it can not ensurc satisfaction of user-defined perfor-

mance bounds.

In addition, stopband and passband ripples J‘(hﬂ) and
dp(ho), and transition width 7{ho) do not have closed form
equations. We have to evaluate all of them using numerical
methods.

The stopband ripple . (ho) is estimated in the frequency
range [7/2, 7] using the absolute value | Ho{w}]| of frequency
response Ho(w). First, we uniformly sample the frequency

1 refers to a low- DNass filter

range from 7 /2 to m. Frequency intervals that contain a lo-
cal maxima arc found based on the sampie poinis. Within
each interval, we apply Newton’s method to precisely lo-
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does not converge after a fixed number of iterations, Golden
search is used to reduce the interval and re-start Newton’s
method. Among all these local maxima, the largest one is
the stopband ripple 4, (ko). In a similar way, the passband
ripple &, ( ho) is found in frequency range of [0, 7 /2].
Using the stopband ripple 6, (hg), we are able to find
stopband cut-off frequency w,(ho), which is the first w €
[r/2, 7] such that |Ho(w)| = 8. (ko). This is done by first
finding w,{Ao) using sampling, and then refining it with
combination of Newton’s method and biscclion search, Sim-

ilarly. the nasshand cut-off frequency ¢ tha firat .
iiariy, (n€ Passiani Cui-o1 irCquiicy kanu, n tne nrstw €

(0, m/2] such that |Hy(w}| = 1 — &, (ho).

With estimated cut-off frcauenmeq w,(he) and w; (hg),
we can easily calculate transition width r(h(,) = we(ho) —
wp{ho), stopband energy E,(ho), as well as passband en-
ergy Ep(ho). Note that, when we calculate these perfor-
mance metrics, the main operation that may cause lower
precision is the sum in |Hg(w)|. In order to maintain at
high precision, we employ Kahan's summation formula.

3. CONSTRAINED OPTIMIZATION

FORMULATION
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tives for both overall filter bank and individual filters: (a)

satisfy PR condition (2), i.c. equality constraints; (b) min-
imize stopband energy E,(h¢) and E_,(hl), (c) minimize
stopband ripple 4, (ho) and &, (h;); (d) minimize passband
energy E,(ho) and E,(h,); () minimize passband ripple
dp(ho) and 4, (hy); (f) minimize transition width 7(ho) and
T(h]).

It can be formulated either as a multi-objective uncon-
strained optimization or as a single-objective constrained
optimization Ina multi-objective formulation, a possible

way i isto upuuuw the ucmsll with iespeciio a subsei of the
performance measures, for example,

PR condition and min E,(ho) and E.(h;) Q)

which is adopted by most existing work [5]. Unfortunately,
optimal solutions to the simplified optimization problem are
niot necessarily optimal solutions to the original problem,
and performance measures not included in the formulation
are compromised.

In general, optimal solutions of a multi-objective prob-
lem form a Pareto optimal frontier such that one solution on
this frontier is not dominated by another. One approach to
find a point on the Pareto frontier is to optimize a weighted
sum of all the objectives. This approach has difficulty when
Pareto frontier points of certain characteristics are desired,



such as those with certain transition width. Different com-
binations of weights must be tested by trial and error until
a desired filter is found. When the desired characteristics
are difficult to satisfy, trial and error is not effective in find-
ing feasible designs. In this case, constrained formulation
should be used instead.

In constrained formulation, constraints are defined with
respect 10 a reference design or user-specified performance
bounds. Constraint-based methods have been applied to de-
sign filter banks in both the frequency [1] and the time do-
mains [3]. In all these designs, most performance metrics
like transition width and ripples are not evaluated, and en-
ergy using predefined cut-off frequencies is not accurate.
Therefore, given a performance bound, none of them can be
used to design a required filter bank.

We formulate the filter bank design in the most general
form as a constrained nonlinear optimization problem, in
the sense that all the performance metrics are evaluated pre-
cisely based on their definitions, as follows,

Epp{ho, h) 4
PR condition

Minimize
Subject to

E.(ho) < Eso Ey(h1) < Ey
Ep(ho) < Epo Ep(h1) < Ep
8+ (ho) < 850 Se(hy) < 841
Jp(ho) < XPO Jp(hl) < Spl

T(ho) <70 T(1) <7

where E.q, E,1, Epo, Epla 850, Ssl:spO: Spla To, and 71 are
user-specified performance bounds. The objective function
Epg(ho, hy) is defined as a squared sum of all the equality
constraints in PR condition (2). Hence, the minimum of the
objective function is equivalent to PR condition.

The performance metrics cover different ranges of val-
ues, for example, the stopband energy is of order 10~%,
the ripples of order 10~2, and the transition width of or-
der 10~1. In order to balance their effects on optimization,
we choose to normalize them and obtain

Minimize Eppg(hq, h1) 5)
Subject to PR condition
E.(ho)/Eso—1<0
EP(hO)/EPO -1 < 0
8.(ho)/b0—1<0
6P(h0)/‘§p0 -1 < 0
T(ho)/To—1<0

E.(h1)/Es1 —1<0
Ey(h1)/Ep1 —1<0
8.(h1)/851 —1<0
p(h1)/8p1 =1 <0
T(hy)/71—1<0
If the performance bounds are computed from the best
known design and we tighten some of them, it is possible
for us to improve the solution. For a simpler case of QMF

filter bank design, we have already shown some improved
solutions and efficiency of our algorithm [6].

4. LAGRANGE MULTIPLIER METHODS

To solve the constrained optimization problem (5), we use
a Lagrange multiplier method [2], where inequality con-
straints are transformed into equality constraints using slack
variables. In the Lagrangian formulation, a local minimum
in a feasible region is a saddle point at which the objec-
tive function is at a local minimum and the weighted sum of
the constraints is at a local maximum. By using this prop-
erty, saddle points can be found by local search methods that
perform gradient descents in the original-variable space and
gradient ascents in the Lagrange-variable space.

The Lagrange multiplier algorithm requires first-order
derivatives to compute gradients. For closed-form formulas
such as stopband energy E,(hg), it is easy to derive their
analytical forms of derivatives. But for nonclosed-form for-
mula such as transition width 7(ho), we use finite difference
methods to approximate their derivatives.

Because the formulated filter bank problem is highly
nonlincar constrained optimization problem, the Lagrange
multiplier method may get trapped into a local minimum
like most local strategies such as gradient descent and New-
ton’s method. To escape from the local minimum, global
search approaches can be utilized, for instance, covering
methods, interval methods, simulated annealing and genetic
algorithms. But they take much longer time than local search
methods, and thus tradeoff between quality of solution and
computational time has to be examined.

The goal of this paper is to show how our formulation
and evaluation can be used to design the filter bank given
user-specified performance bounds and how to do trade-off
among different performance metrics. We will not study
performance of different global search algorithms.

5. EXPERIMENTAL RESULTS

Starting from an initial point (hff:o), A=Y, we set ini-
tial values of the Lagrange multipliers to be zero, and solve
the dynamic equations of the Lagrangian function by using
LSODE ! until it converges.

Here, we only describe one example to show how our
formulation improves existing results and makes tradeoff
among different performance metrics. We use example 2.3 [1]
as our baseline where Ny = 16 and N, = 28.

To design such filters, the authors [1] use the fixed fre-
quency cut-offs, i.e. w.(ho) = 0.67, wy(ho) = 0.44m,
we(h1) = 0.6, and wp(hy) = 0.47. However, according
to definition of the frequency cut-off, these values should
vary with the filter parameters. Even for the reported solu-
tion, the actual cut-offs should be w, (hg) = 0.6237, w, (ho)
= 0.4197, w,(hy) = 0.620m, and w,(h1) = 0.4657. This

ILSODE is a solver for first-order ordinary differential equations, a
public-domain package available from http://www.netlib.org.



Table 1: Improved result for 95% passband ripple.

Table 3: Trade-off for stopband ripple and passband energy.

performance | normalized || performance | normalized performance | normalized || performance | normalized
of filter hy solution of filter h; solution of filter hg solution of filter h; solution
E.(hg) 1.00 E(hy) 1.00 E,(ho) 0.99 E.(hy) 0.81
E, (ko) 0.96 E,(hy) 0.96 Ep(ho) 1.05 Ey(hy) 1.04
ds (ho) 1.00 ds(hy) 1.00 3. (ho) 0.90 de(hy) 0.90
8, (ho) 0.95 ép(h1) 0.95 dp(ho) 1.00 b (h1) 1.00
7{ho) 1.00 T(h1) 1.00 T(ho) 1.00 T(hy) 1.00

Table 2: Improved result for 90% passband ripple.

Table 4: Trade-off for reduced transition width.

performance | normalized || performance | normalized performance | normalized || performance | normalized
of filter hy solution of filter h, solution of filter ho solution of filter A, solution
E, (ho) 1.00 E (k1) 0.98 Ly (ho) 1.00 Ey(h1) 0.87
E, (ho) 1.00 E,(hi) 1.00 Ep(ho) 1.74 p(hl) 1.69
8+ (ho) 1.00 6,(h1) 1.00 43 (ho) 1.00 8. (h1) 1.00
&, (ho) 0.90 8, (h1) 0.90 dp (ho) 1.00 dp (111} 1.00
(ko) 1.00 7(hy) 1.00 7(ho) 0.95 ("1) 0.94

means performance metrics of stopband and passband en-
ergy are not accurately calculated. In addition, performance
metrics of ripples and transition widths are not measured.

Using the solution given by [1], we first compute per-
formance metrics, and set them as our performance bounds

xO, E!la Ep()a Epla 50, 5*1» 5p0’ 5171) To0, and 7 Ti in our con-
strained formulation (5). In the following, our solutions are
normalized by these bounds, meaning that the value less
than one is better.

In the first set of experiments, we tighten performance
bounds of passband ripples to show improved results. To
obtain the design with 95% of the passband ripples of both
filters hg and h;, we set performance bounds as 0.956,¢ and
0.953,,1, and solve it using the Lagrange multiplier method.
All the constraints are satisfied, and the performance met-
rics of our solution is given in Table 1. We improve both
passband ripples and energy. The performance bounds of
passband ripples are further tightened to 90%, and we find
a solution shown in Table 2.

In the next set of experiments, we want to study how
to do trade-off among different performance metrics, where
some metrics are relaxed while some are tightened. Table 3
shows the result that we tighten stopband ripples to 90% and
relax passband energy by 5%.

Table 4 shows another trade-off result for reduced tran-
sition width. Obviously, transition width is a critical per-
formance metric. Tightening it little bit may cause large
degradation of other performance metrics like passband en-

ergy.

As a conclusion, two points have to be emphasized. First,

the reason why the desired filter bank can be designed given
performance bounds is that we accurately evaluate these
performance metrics, and formulate it as a constrained opti-

mization problem. Second, involving all these metrics makes
the design problem more difficult to solve due to high non-
linear and non closed form constraints. Therefore, the solu-
tions we obtained are just local search results, which can be
further improved using some global search method.
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