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ABSTRACT 

The issue of a priori threshold setting in speaker veri- 
fication is a key problem for field applications. In the con- 
text of the CAVE project, we compared several methods for 
estimating speaker-independent and speaker-dependent de- 
cision thresholds. Relevant parameters are estimated from 
development data only, i.e. without resorting to additional 
client data. The various approaches are tested on the Dut.ch 
SESP database. 

1. INTRODUCTION 

The CAVE project (CAller VErification in Banking and 
Telecommunications) is a 2-year project supported by the 
Language Engineering Sector of the Telematics Applica- 
tions Programme of the European Union, and for the Swiss 
partners by the Office Federal de 1’Education et de la Sci- 
ence (Bundesamt fiir Bildung und Wissenschaft). The part- 
ners are Dutch PTT Telecom, KUN, KTH, ENST, UBI- 
LAB, IDIAP, VOCALIS, TELIA and Swiss Telecom PTT. 
It started on December lst, 1995. The technical objectives 
of the CAVE project are to design, implement and assess 
2 t,elephone-based systems which use Speaker Verification 
(SV) technology. Work Package 4 (WP4) in this project fo- 
cuses on the research and development aspects. The speaker 
verification system used in the experiments reported here is 
the Generic C4VE-WP4 SV system [l], based on the HTK 
software platform [2]. 

Laboratory evaluations of SV systems are usually based 
on the Equal Error Rate (EER), obtained by a posteriori 
setting the decision threshold(s) so as to equalise the false 
rejection and acceptance rates. Indeed, the EER gives a 
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good idea of the quality of the modeling module in a SV 
system. However, in the context of field applications, a 
specific procedure must be implemented in order to set the 
decision threshold a priori, namely during the enrollment, 
procedure. Whereas Bayesian theory indicates that the de- 
cision threshold could be readily predicted for the false re- 
jection and false acceptance costs, the mismatch between 
the speaker (and non-speaker) model(s) and the real data 
distributions requires the adjustment of the threshold for 
an efficient decision. 

This paper reports on a series of comparative experi- 
ments on a priori Threshold Setting (TS) carried out by 
WP4. We first recall the main theoretical aspects involved 
in TS. Then, we express several TS procedures under a com- 
mon formalism. Finally, we compare their efficiency on a 
task of speaker verification on a realistic telephone speech 
dat.abase (the SESP database). 

2. THEORETICAL B+CKGROUND 

2.1. Notations 

Let X denote a speaker, and X his probabilistic model. 
Let 2 denote the non-speaker model for speaker X, i.e the 
model of the rest of the population. Let Y be a speech 
utterance claimed as being from speaker X. 

If we denote as X (resp. k) the acceptance (resp. re- 
jection) decision of the system, and px (resp. px) the a 
priori probability of the claimed speaker to be (resp. not to 
be) speaker X, the total cost function of the system is [3] : 

c = C(k,,, .px P (k;rlX) + c,j+,x, .px . P (BlX) (1) 

where P (XIX) and P (21X) denote respectively the prob- 
ability of a false acceptance and of a false rejection, while 

q*,a, and C&x, represent, the corresponding costs (as- 
suming a null cost for a true acceptance and a true rejec- 
tion). 

2.2. PDF Ratio and Bayesian Threshold 

If we now denote by PX and Px the Probability Density 
Functions (PDFs) of the speaker and of the non-speaker 



distributions, the minimisation of C in equation (1) is ob- 
t.ained by implementing the PDF Ratio (PR) test [4] : 

Px (Y) >’ 
pRx (y) = P,q (Y) & R (2) 

where R is the Bayesian threshold : 

c(w, PX 
R=Gyx 

(3) 

2.3. Half Total Error Rate 

-4s can be seen from equation (3); the optimal threshold 
should only depend on the false acceptance / rejection cost 
ratio and the impostor / client a priori probability ratio. In 
the particular case when the costs C,R,~, and C,?.,,, are 
equal to 0.5, and when clients and impostors are assumed 
a priori equiprobable, the choice of 0 = 1 as a decision 
threshold should then lead to a minimum of the Half Total 
Error Rate : 

HTER = ; [P (21x) + P (%1X)] (4) 

2.4. Likelihood Ratio and Threshold Adjustment 

In practice, however, the PR in equation (2) is calculated 
from likelihood functions, i.e estimations of the PDFs, which 
do not match the exact speaker and non-speaker distribu- 
tions. As a consequence, it is usually necessary to adjust 
the threshold of the PR test accordingly, in order to correct 
for the improper fit between the model and the data [5]. 

Thus, the PR test becomes an LR. (Likelihood Ratio) 
test : 

where & and p* denote the respective model likelihood 
functions for the speaker and the non-speaker, and 0~ (R) 
is a speaker- (and cost-) dependent threshold. 

2.5. Gaussian log-LR model 

In most cases, the logarithm of LRx(Y) is obtained as t.he 
sum of the logarithm of t.he frame-based likelihood ratio 
scores lrx (9;) : 

iZ” 

log LRx (Y) = c log h-x (vi) 
i=l 

(6) 

where yi denotes the ifh frame in utterance Y, of total 
length n. In some variants, t,he average log-LR is used in- 
stead of the log-LR : 

log LR’X (Y) = k log LRx (Y) (7) 

We will refer to these two quantities as unnormalised and 
normalised LR., respectively. 

If n is large enough, the utterance log-likelihood ratio 
can be assumed to follow a Gaussian distribution. This 
distribution is different depending on whether the speech 
utterance Y was pronounced by speaker X or by an impos- 
tor X : 

log LRx O’IX) + E (Mx; Sx) 
log LRx (Ylx) + E (MR; S*) 

and similarily : 

(8) 

log LR’x (YIX) ---+ 6 (mx; sx) 
log LR’x (Ylr;) --t G (mR; Ye) 

with the ohvious relations : 

(9) 

MX = n mx Mx = nmx 
SX = nsx SX = nsx (10) 

As opposed to the utterance log-likelihood ratio, the 
frame-based log-likelihood ratio does not generally follow a 
Gaussian distribution. But, if we now denote as PX and 
(TX (resp. 11x and ax) the mean and variance of the dis- 
tribution of the frame-based client (resp. impostor) log- 
likelihood ratio log Zrx (g;lX) (resp. log lrx (yi[X)), and 
if we assume that the frame-based scores are statistically 
independent, we have (according to the Limit Central The- 
orem) : 

mx = PX 7n, = ~2 
sx = ax/&i “2 = un/J5; (11) 

Under the assumption that the client and impostor log- 
LR follow Gaussian distributions, the optimal decision thres- 
hold can be obtained as : 

6 (Mx; Sx) (t) 
4 (Mx; sx) (t) = R 1 (12) 

and similarily for log-LR’. 
In practice, it is feasible to obtain reasonable estimates 

of M* and S,, from scores yielded by a population of 
pseudo-impostors. Conversely, in real applications, MX and 
SX have to be estimated from the enrollment data them- 
selves and are therefore strongly biased, especially in the 
case when very few enrollment data are available. 

3. SPEAKER-INDEPENDENT (SI) 

THRESHOLD 

A classical method for adjust.ing the threshold Ox (R) in 
equation (5) consists in estimating a speaker-independent 
threshold so as to optimise the cost function of equation (1). 
In practice, this optimisation is c’arried out on a develop- 
ment data set, composed of enrollment and test data for a 
population of speakers which is distinct from (but represen- 
tative of) the actual client population. In our experiments, 
we have tested the SI method both with unnormalised and 
normalised LR. We denote these two approaches as SI and 
SI-N, respectively. 

The SI and SI-N methods do not make any particular 
assumption as regards the shape of the log-LR distribution. 
However, the fact that the threshold is speaker-indepen- 
dent relies on the hypothesis that the mismatch between the 
likelihood function and the actual client PDF translates into 
a client-independent shift between the log-PR and the log- 
LR.. This is obviously a very simplistic hypothesis as part 
of the model mismatch is certainly variable across speakers. 



4. SPEAKER-DEPENDENT (SD) THRESHOLD 

Conversely, the estimation of a speaker-dependent thresh- 
old accounting for the variability in modeling accuracy can 
he hindered by the lack of proper data for estimating that 
threshold. Indeed, in the context of practical applications, 
enrollment material is so limited that it is not reasonable 
to reserve any of it for threshold setting. The speaker- 
dependent. threshold must be derived from the same client 
data as those used for training the client model (and from 
some pseudo-impostor data). 

In the next sections, we present 3 methods for speaker- 
dependent TS. The first method (SD-l) consists of estimat- 
ing 0~ (R) as a function of the log-LR mean and variance 
only, following an approach similar to the one proposed 
by Furui [6]. The second method (SD-2) relies on an es- 
timation of 0~ (R) using also the client score obt.ained on 
the enrollment data. The third method (SD-3) is based on 
the Gaussian model introduced in subsection 2.5. Methods 
SD-1 and SD-2 were tested with the unnormalised log-LR., 
whereas SD-3 was used with the normalised one (log-LR’). 

4.1. Method SD-1 

In this method, 0~ (R) is obtained as a linear combination 
of estimates of Mx and Sx only : 

@x(R) = i& + c& (13) 

where $12 and 2,~ are obtained from pseudo-impostor data, 
whereas CL is optimised on a development population. 

4.2. Method SD-2 

In this method, 0~ (R) is obtained as a linear combination 
of estimates of Mx and Mx : 

8x (R) = pii& + (1 - ,0) ti; (14) 

where Mx is obtained from pseudo-impostor data, whereas 
h^lg is the (biased) estimate of Mx obtained on the client 
enrollment data. Parameter fi is optimised on a develop- 
ment population. 

4.3. Method SD-3 

This method is explicitely based on the Gaussian model 
of utterance the utterance log-LR distribution, as exposed 
in [5]. Estimates fi$ and &> of ,UX and (TX are initially 
obtained from the client enrollment data, whereas px and 
[TS are estimated from the pseudo-impostor data. Then, a 
speaker-independent correction h is applied to F> only : 

(15) 

where A is optimised on a development population. Then, 
estimates of mx, SX: mx and sx are obtained from fix, 
irx, fix and 5’8, as in equation (11). Finally, OX (R) is 
obtained as in equation (12) : 

Ox (R) = arg, 
E (fix; ax) (t) 

0 (rn,; ix) (t) = R 1 (16) 

5. DATABASE AND PROTOCOL 

All our experiments on TS were carried out on the real- 
istic telephone speech database SESP, collected by KPN 
Research (the research laboratory of the Dutch Telecom). 
It contains telephone utterances from 21 male and 20 female 
speakers calling with different handsets (including some calls 
from mobile phones) from a wide variety of places (such as 
restaurants, public phones and airport departure lounges). 
During each call, the speaker was asked to utter a speaker- 
dependent sequence of 14 digits (twice) and another (session- 
dependent) sequence of 14 digits, corresponding to the num- 
ber assigned to one of the other speakers. 

Each session contains therefore 2 utterances of the client 
card number. For the experiments described in this paper 
we used 2 enrollment sessions with a low level of background 
noise, corresponding to 2 calls placed from 2 different hand- 
sets. Two other calls were reserved as extended enrollment 
material. The remaining calls was used as test material. 

111 our experiment on TS, we have split the SESP data 
into 2 sub-populations which we denote SESP-a and SESP- 
1~. SESP-a contains 11 male and 10 female speakers while 
SESP-b contains 10 male and 10 female speakers. Each 
data set is composed of approximately 800 genuine trials 
and 250 impostor attempts from other clients (out of which 
about 75 ‘% are same-sex attempts). We use SESP-b as 
pseudo-impostors and development data for SESP-a and 
vice-versa. 

Acoustic features are 16 LPC cepstral coefficients wit.h 
log-energy, together with their first and second derivatives. 
Cepstral mean substraction is applied. Our tests were car- 
ried out using Left-Right HMM digit models, with 2 differ- 
ent topologies : p = 2 states per phoneme x q = 3 Gaussian 
densities per state, and p = 3 states per phoneme x q = 2 
Gaussian densities per state. In these experiments, both the 
client model and the non-client model (here, a world-model) 
have the same topology. These configurations were chosen 
as they were those that we found to work best in terms of 
Equal Error Rate, in previous experiments on SESP [l]. 

In all our experiments, we aim at optimising the HTER, 
as defined in equation (4). 

6. RESULTS 

Comprehensive results are reported in Table 1. We pro- 
vide separate performances for SESP-a and SESP-b. We 
first give Equal Error Rates for both unnormalised and nor- 
malised likelihood scores. Then, we give the performance 
with the fixed threshold 0 = 1, followed by those obtained 
with the various TS methods presented above. For each 
method, we compare the performance obtained with an ex- 
ternal development population to t.hose (always better) that 
are reached when the development population is the same 
as the test population. The latter scores are given in italics. 

7. COMMENTS AND CONCLUSIONS 

On our task, normalisation by the utterance length seems 
t.o have little effect. But SESP utterances all have quite 
similar lengths. Therefore, the real impact of normalisation 
can not he studied accurately. 



’ TS method 11 eval. data 1 dev. data p=2,q=3 p = 3, q = 2 

a posteriori (sp.-dep. thresholds) EER EER 

EER SESP-a - 0.57 0.99 
SESP-b - 0.46 0.63 

EER-N SESP-a - 0.57 0.99 
SESP-b - 0.26 0.89 

a priori FR FA HTER FR FA HTER 

@=l SESP-a - 12.11 0.25 6.18 13.25 0.25 6.75 
SESP-b - 8.21 0.00 4.10 9.76 0.00 4.88 

SI SESP-a SESP-b 0.86 4.60 2.73 1.85 4.01 2.93 
SESP-a 2.22 2.72 2.47 2.59 2.41 2.50 

’ SESP-b SESP-a 1.72 1.73 1.72 1.47 1.61 1.54 
SESP-b 0.26 2.26 1.26 0.97 1.91 1.44 

SI-N SESP-a SESP-b 1.63 4.95 3.29 2.73 2.15 2.44 
SESP- a 3.06 1.62 2..74 3.06 1.44 2.25 

SESP-b SESP-a 2.25 1.96 2.11 2.12 1.61 1.87 
SESP- b 0.42 2.66 1.54 1.59 1.61 1.60 

SD-1 SESP-a SESP-b 4.08 2.26 3.17 3.25 3.59 3.42 
SESP- a 3.35 2.26 2.80 9.72 2.43 3.07 

SESP-b SESP-a 1.05 3.69 2.37 1.44 2.98 2.21 
SESP- b 1.17 3.00 2.09 0.79 3.34 2.07 

SD-2 SESP-a SESP-b 2.83 1.82 2.32 2.72 2.52 2.62 
SESP-a 2.83 1.82 2.32 2.61 2.52 2.57 

SESP-b SESP-a 1.28 1.12 1.20 1.02 1.80 1.41 
SESP- b 1.28 1.12 1.20 1.28 1.52 1.40 

SD-3 SESP-a SESP-b 4.86 1.66 3.26 2.80 1.89 2.35 
SESP- a 0.97 2.20 1.58 1.08 1.92 1.50 

SESP-b SESP-a 1.65 2.44 2.05 1.76 3.11 2.43 
SESP- b 0.57 2.71 1.64 0.57 2.68 1.63 

Table 1: Equal Error R.ates and comparative results for several a priori Threshold Setting methods, on the SESP-a and 
SESP-b databases. Scores in italics are obtained with the evluation data used as development data. 

Loosely speaking, the HTER is about 3 to 5 times larger 
than the EER. This stresses once more the fact that the 
EER figure is a very optimistic evaluation of the actual 
performance of a SV system. 

All methods yield similar results except method SD- 
2 which seems to perform consistently better. This may 
come from the fact that SD-2 is only using the means of the 
log-LR distributions, which are probably estimated more 
reliably than the variances, given the small amount of data 
and t.he strong bias in the client estimates. 

It must also be noted that the SI methods do not per- 
form especially worse than the SD methods, which tends to 
show that a large part of t.he model mismatch can be ac- 
counted for by a speaker-independent shift of the Bayesian 
threshold. 

Quite important differences are observed between per- 
formances obtained on SESP-a and SESP-b, which illus- 
trates the relatively large confidence interval that must he 

t.aken into account when interpreting these results. 
Future work will consolidate these results, hy extending 

the amount of experiments and t.he size of the database, 
and by testing the merit of the various Threshold Setting 
methods for other cost functions than the HTER. 
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