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ABSTRACT 

We present here a novel multiresolution-based image 
segmentation algorithm. The proposed method extends and 
improves the Gaussian mixture model [GMM) paradigm by 
incorporating a multiscale correlation model ofpixel dependence 
into the standard approach. In particular, the standard GMM is 
modified by introducing a multiscale neighborhood clique that 
incorporates the correlation between pixels in space and scale. 
We modify the log likelihood function of the image field by a 
penalization term that is derived from a multiscale neighborhood 
clique. Maximum Likelihood (ML) estimation via the Expectation 
Maximization (EM) algorithm is used to estimate the parameters 
of the new model. Then, utilizing the parameter estimates, the 
image field is segmented with a MAP classifier. It is demonstrated 
that the proposed algorithm provides superior segmentations of 
synthetic images yet is computationally etficient. 

1. INTRODUCTION 

The overall goal of image segmentation is to identify 

rcpions that display similar characteristics in some sense. Image 

segmentation algorithms accomplish this by assigning each 

pixel to be a member of one of K classes or homogeneous 

regions. Robust segmentation algorithms often utilize a 

parametric model of the image field [I]. A statistical model of 

the image field is in the form of a probability density function 

(pdf) of the pixel intensities. Often the parameters of the pdf are 

not known a priori. thus parameter estimation theory can be 

utilized to achieve an efficient and consistent estimate of the 

model parameters [2]. In this section, the Gaussian Mixture 

Model (GMM) is formally described. The objective is to 

provide a framework for modeling the image field. In 

subsequent sections. it is demonstrated how images can be 

segmented using ML parameter estimation of the GMM. 

By using thee GMM. we assume the image field, Y(iJ), 
consists of intensities from K different classes, As an example, 

in MR brain images these classes represent different tissues (i.e. 

White Matter, Gray Matter, and CSF). In the GMM. pixel 

intensities arc assumed to be independent and identically 

distributed (iid). The i.i.d assumption allows for simple 

computation with the well-known Gaussian density functions. 

The intensity of each class is characterized by one of K 

different Gaussian density functions. Therefore, the model for 

the data is given by 

K 

P(Yi) = C PC,Yi = Yki =J)P(kt = j) 
,j= I 

(1.1) 

where p(yi = YI ki = j) is the conditional probability of each 

pixel and is defined by the Gaussian 

p(yi = Ylk, = j) = N(p), oj’) (1.2) 

and p(ki = j) is the prior probability that the class of pixel i 
is class j. It is pointed out that the notation emphasizes 

individual pixel statistics rather than the entire image. Thus 

(I. I) defines a Gaussian mixture. 

To characterize the GMM, we define the parameter vector 

0 = [p, 012 p2 cJz2 . krk .k21T. Given the data and with 

knowledge of @. the Maximum a posteriori (MAP) estimate ol 

the class,ii at pixel i can easily be computed. The MAP 

estimate, kt , of the class of pixel i is defined as: 

bi = ar,gmax p(ki = jlyi = Y) 
(1.3) 

We can proceed to segment an image by assigning class 

memberships to each pixel individually using the above MAP 

estimate of the pixel class. 

In practice, the conditional density parameters, oi (e.g. pi 

and oi2), and prior probabilities, p(ki = j), are not known a 
priori. For these reasons. the Maximum Likelihood (ML) 

estimation technique is used to find the estimated value of Qi 

based upon data in the image field. Since the class 

correspondence of each pixel in the image field is not known a 

priori, ML estimation for the conditional density parameters is 

a challenging nonlinear optimization problem. An attractive 

iterative technique to solve this problem is the Expectation 

Maximization (EM) algorithm [ I j. 

The GMM-based segmentation algorithm assumes neighhor- 

ing pixels are independent and identically distributed (ii.& 

However, pixels in homogenous regions of most natural images 

are correlated with one another which leads the GMM-based 

algorithm to yield poor segmentations [ 31. Markov random fields 

(MRF) have been used to model this correlation. MRF models 

are not computationally tractable, thus we propose a simplified 

multiresolution-based algorithm which incorporates neighboring 



pixel correlation to yield improved segmentations. The proposed 

scheme is an improvement to the method of Ambroise et al 141. 

The next section shall formally describe the novel multiresolu- 

tion algorithm. 

2. THE MR EM ALGORlTHM: A NEW 
MULTIRESOLUTION LIKELOHOOD FUNCTION 

The point of departure for the proposed new multiresolution 

EM algorithm is a particular convenient form of the log likeli- 

hood equation arising in the standard GMM segmentation 

approach. In particular, it is demonstrated in [4] that the log like- 

lihood function can be written as 

L(Z.@) = C C Ziklog(p(kj = k)p(.Yj@k,(yi E k))) 

k=lr=l 

K I, 

- C C ziklog(zjk) (2.1) 
k=]i=l 

Zis a matrix whose elements are all the zik of the image, where at 

the plh iteration of the EM algorithm. zjk is defined by 

‘ik 

(,“) _ p(kj = k@‘)p(y,lkj = k, dP’) 
- K 

c p(ki = JDcP))pCy,Ik, = j, @(“) 
,j= I 

(2.2) 

Recall, that the EM algorithm iterates until the parameter matrix, 

@, converges to a local maxima of the log likelihood function. In 

the E-step of the EM algorithm, Zjk is the probability that pixel i 
belongs to class k. Thus, the outputs of the EM algorithm. Q and 

Z. also maximize L(Z,@). The proof that the EM algorithm maxi- 

mizes L(Z.@) can be found in [4]. 

As is apparent. L(Z.0) does not account for the spatial corre- 

lation of the data. We propose to modify the log likelihood equa- 

tion (2.1). by the addition of a penalization term, V(Z). The 

penalization term will bias the log likelihood of a pixel, i. 
belonging to the same class, k,, of its neighbors. Thus, it is 

observed that V(Z) is modifying the pdf to incorporate desirable 

correlation properties. This prior probability on the pixel class 

probability is of a Gibbs form and thus like an MRF on the class 

probabilities. The new log likelihood expression is given by the 

following equation 

rJyz,aq = L(Z.0) + V(Z) (2.3) 

The penalization term, V(Z), will incorporate the quadtree 

data structure illustrated in Figure I as well as a simple “clique” 

or pixel neighborhood system. Within the same resolution, we 

define the neighborhood of a pixel, i, to be all pixels which are 

adjacent to pixel i (top, down, right, left, and diagonal). Further- 

more, a pixel at resolution J-2, will be defined to have a neigh- 

borhood at resolution J-l which consists of the parent of i as well 

Scale J=2 (Coarsest Scale) 
Pixel Y(2,O.O) is a parent to 
Y( 1,1, I ) and a “grand-parent” 
to pixels of Scale J=O 

Scale J= I 
Pixel Y(1,l.l) is a parent to 
four pixels of Scale J=O 

Scale J=O 
(Original Image) 

(a) 

(b) 
Figure 1 - Multiresolution Neighborhood Clique. (a) Multires- 

olution scales illustrating the parent-child structure. (b) Ncigh- 

borhood of pixel i within the same scale is shown as small 

circles. Note, the total neighborhood of pixel i also includes its 

parents and grandparents as well as their respective neighhor- 

hoods. 

as the parent’s neighborhood. This neighborhood can bc 

extended further across resolution to include the “grand-parents” 

of i at resolution J. In practice, we only incorporate the informa- 

tion from scales J = 0, I, and 2. The neighborhoods at each reso- 

lution will have different weights in the neighborhood 

interaction weights of the penalization term. Let us define the 

following neighborhood interaction weight (NIW). 

1 Q if pixel i and rare neighbors at resolution 0 

J3 if pixel i and rare neighbors at resolution 0 and I 
v. = 
’ rJ (2.4) Y if pixel i and rare neighbors al resolution 0 and 2 

IO else 

Using the NIW of (2.4), we propose the following penalization 

term 

J K :V X 

‘(‘) = c c c c ~jik~jr.kC'irj 

,j=Ok= II= lr= I 

(2.5) 

Where qjk is the probability of pixel, i. from resolution j being a 

member of class k. Note, that this changes the E-step of the EM 

algorithm such that zjk is now defined by 



(Z) weights neighborhoods which have pixels that are members 

of the same class more than heterogeneous neighborhoods. Fur- 

thermore, it is observed that V(z) is only dependent on the proha- 

bility matrix, Z, whose elements are the individual pixel 

probabilities. zjik. 

A modified version of the EM algorithm can be used to maxi- 

mize the new penalized log likelihood equation, U(Z,@). We 

shall call the modified EM algorithm the Multiresolution EM 

(MEM) algorithm. The attractiveness of the MEM algorithm is in 

the approach of utilizing a multiresolution neighborhood. The 

coarser resolutions will allow for the segmentation of the more 

prominent features in the image. However, the information at the 

finer levels is important for accurate segmentation along bound- 

aries and for segmenting highly detailed regions. Thus this has 

three advantages: I) the MEM algorithm has desirable correla- 

tion properties and avoids blurring, 2) misclassifications are 

reduced, and 3) the MEM algorithm is computationally more 

tractable than MRF models. The subsection below presents an 

overview of the MEM algorithm. 

3. THE MULTIRESOLUTION SEGMENTATION 
ALGORITHM 

Given an image Y. a three-level Discrete Wavelet Transform 

(DWT) using the Haar basis is computed. The DWT will provide 

a collection of low-pass filtered images, (St, Sz), where S2 is the 

coarsest image as well as the original finest scale image, Y. We 

derive zjkl and zjkz using the conventional EM algorithm via the 

monoresolution Gaussian mixture model, and segment S, and 

Sl. Then after this information is provided, we can apply the 

MEM algorithm to Y. The MEM segmentation algorithm can hc 

summarized as follows: 

Step I: Compute 3 level DWT to obtain St, S?. 

Slep 2: Run standard EM on St and S2 to obtain zikl and zjk, 

Step 3: Run MEM on Y using U(Z,O) as the log likelihood. 

Figure 2 provides an illustration of the algorithm. 

4. EXPERIMENTAL RESULTS 

To demonstrate the robustness of the MEM algorithm and 

compare its performance against the traditional GMM-based 

segmentation algorithm, we applied the MEM algorithm to a test 

image. Specifically, the goal is to demonstrate that a multircsolu- 

tion segmentation will result in a more accurate segmentation of 

the image field. The experimental results will demonstrate that 

while the NEM algorithm of Ambroise et al. performs better than 

the GMM-based segmentation algorithm, however the NEM’s 

segmentations are not as accurate as the MEM algorithm’s scg- 

mentations. 

In the experiments, WC segment the test image (a) of Figure 

3. In test image (a), the three classes arise from three different 

Gaussian noise processes. There are two main challenges in seg- 

menting the test image. The variances of the three classes were 

allowed to be large such that the pdf’s of each Gaussian have a 

significant overlap. This is significant because once the parame- 

ters, 0, are estimated, the MAP classifier becomes a simple min- 

imum distance classifier. Thus, pixels are labelled to a class 

whose mean intensity they are nearest to. The GMM-based scg- 

mentation of this image results in many errors due to this overlap 

of pdf’s. The other challenge of test image (a) is the 2-pixel wide 

horizontal line which runs through all the classes. Since the 

coarser resolutions of the MEM algorithm are in practice low- 

pass filtered versions of the original image, the line can be 

blurred and the segmentation map of the final image will have a 

poor labelling of the horizontal line. However, since the MEM 

algorithm utilizes information from all resolutions, the horizontal 

line is preserved in the segmentation, 

The segmentations of the test image are shown in Figures 

3(b)-3(d). Clearly, the GMM-based segmentation failed to dem- 

onstrate the spatial correlation existing between pixels of the 

same region due to the large variance of each class. The MEM 

algorithm provides a subjectively and quantitatively superior 

segmentation. The MEM algorithm is also compared to the 

Neighborhood EM (NEM) algorithm of Ambroise et al. [4]. 

While the NEM algorithm performs better than the conventional 

EM algorithm, the new MEM algorithm yields a more accurate 

segmentation map. 

Figure 4 demonstrates an application of the MEM algorithm 

to the MR Brain image segmentation. The challenge in segment- 

ing MR Brain images is to accurately label tissues such as white 

matter, gray matter, and cerebrospinal fluid. Figure 4(b) shows 

the segmentation map of the brain into the different tissue types. 

Thus, the proposed MEM algorithm has been shown to seg- 

ment both synthetic and real images accurately. Fine structure is 

preserved and the MEM algorithm incorporates the pixel con-ela- 

tion across space and scale which allows for better segmcnta- 

tions than the standard GMM. Moreover, the MEM algorithm is 

computationally efficient which is an important advantage when 

compared to MRF-based segmentation algorithms. 
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Figure 2 - Schematic of the MEM segmentation algorithm. 

Figure 3 -(a) Classes I ,2, and 3 and have means of 50, 100. and I SO, respectively. All classes have a variance of 225 with a 2- 

pixel wide horizontal strip from class 3 running through the other classes. (b) Segmentation using conventional Gaussian Mixture 

Model. (c) Segmentation using modified Neighboring EM (NEM) Algorithm of Ambroisc et al. (d) Segmentation using novei 

MEM algorithm. 

Figure 4 - MEM segmentation of MR brain image into white matter, gray matter, air. and cerehrospinal fluid (shown as black 

background). (a) Original MRI of brain, (b) Segmented brain image. 


