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ABSTRACT 

Two novel variants of Dynamic Link Architecture that are 
based on mathematical morphology and incorporate local 
coefficients which weigh the contribution of each node ac- 
cording to its discriminatory power in elastic graph match- 
ing are proposed, namely, the Morphological Dynamic Link 
Architecture and the Morphological Signal Decomposition- 
Dynamic Link Architecture. They are tested for face au- 
thentication in a cooperative scenario where the candidates 
claim an identity to be checked. Their performance is evalu- 
ated in terms of their receiver operating characteristic and 
the Equal Error Rate achieved in M2VTS database. .4n 
Equal Error Rate of 6.6% - 6.8 % is reported. 

1. INTRODUCTION 

Face recognition has exhibited a tremendous growth for 
more than two decades. A critical survey of the literature 
related to human and machine face recognition are found in 
[l]. An approach that exploits both sources of information, 
that is, the grey-level information and shape information, 
is the so-called Dynamic Link Architecture (DL.4) [7]. The 
principles of this pattern recognition scheme can be traced 
back to the origins of self-organisation in neural networks. 
The algorithm is split in two phases, i.e., the training and 
the recall phase. In t.he training phase! the objective is to 
build a sparse grid for each person included in the refer- 
ence set. Towards this goal a sparse grid is overlaid on the 
facial region of a person’s digital image and the response 
of a set of 2D Gabor filters tuned to different orientations 
and scales is measured at the grid nodes. The responses 
of Gabor filters form a feature vector at each node. In the 
recall phase, the reference grid of each person is overlaid on 
the face image of a test person and is deformed so that a 
cost function is minimised. 

A problem in elastic graph matching that has received 
much attention is the weighting of graph nodes according 
to their discriminatory power. Several methods have been 
proposed in the literature. For example, a Bayesian ap- 
proach yields the more reliable nodes for gender identifica- 
tion, beard and glass detection in bunch graphs [ll]. An 
automatic weighting of the nodes according to their signif- 
icance by employing local discriminants is proposed in [2]. 

The research reported in this paper has been carried out 
within the framework of the European ACTS-hI’2VTS project. 

A weighted average of the feature vector similarities by a 
set of coefficients that take into account the importance of 
each feature in assigning a test person to a specific class is 
investigated in [6]. 

In this paper, we propose variants of DL.4 that arc 
based on mathematical morphology and incorporate local 
coefficients that weigh the contribution of each grid node 
according to its discriminatory power. More specifically, 
we propose first a variant of DLA that is based on multi- 
scale morphological dilation-erosion, the so-called Morpho- 
logical Dynamic Link Architecture (MDLA), and we incor- 
porate in this variant linear projections of the feature vec- 
tors (i.e., Principal Component Analysis and Linear Dis- 
criminant Analysis). Second, we develop a DLA variant 
that is based on morphological shape decomposition, the 
so-called Morphological Signal Decomposition-DLA (MSD- 
DLA), which also employs local discriminatory power coef- 
ficients aiming at separating more efficiently the intra-class 
distances and the inter-class ones. In both cases, a two- 
class classification problem is considered. That is, we are 
seeking methods to separate more efficiently feature vec- 
tors extracted from frontal facial images of the same person 
(i.e., the clients) and the ones extracted from frontal fa- 
cial images of the remaining persons in the database (i.e., 
the impostors). A comparative study of the verification ca- 
pability of the proposed methods in MZVTS database [8] 
is also undertaken. The performance of the algorithms is 
evaluated in terms of their receiver operating characteris- 
tic and the equal error rate (EER) achieved in the LIZVTS 
database. It is demonstrated that the combined use of dis- 
criminatory power coefficients with DLA4 variants improves 
their EER by 2.55% to 5.3%. 

2. LINEAR PROJECTIONS IN MORPHOLOGIC4L 
DYNAMIC LINK M.TCHING 

An alternative to linear techniques for generating an in- 
formation pyramid is the scale-space morphological tech- 
niques. In the following a brief description of MDLA is 
given and the incorporation of linear projections is explained. 
In MDLA, we substitute the Gabor-based feature vectors 
used in dynamic link matching by the multi-scale morpho- 
logical dilation-erosion [3]. The multi-scale morphological 
dilation-erosion is based on the two fundamental operations 
of the gray-scale morphology, namely the dilation and the 



erosion. Let R and 2 denote the set of real and integer 
numbers, respectively. Given an image f(x) : 2, c 2” + R 
and a structuring function g(x) : G C 2” --t R, the dilation 
of the image f(x) by g(x) is denoted by (f 8 g)(x). Its 
complementary the erosion is denoted by (f @ g)(x). Their 
definitions can be found in any book on Digital Image Pro- 
cessing. The scaled hemisphere is employed as a structuring 
function [3]. The multi-scale dilation-erosion of the image 
f(x) by go(x) is defined by [3]: 

i 

(fCEgc)(x) ifa > 0 

(f *%)(x> = f(x) iffr=O (1) 
(f @go)(x) if u < 0. 

The outputs of multi-scale dilation-erosion for cr = -9, ? 9 
form the feature vector located at the grid node x: 

j(x) = ((f *99)(x), . . I f(x), , (f *9-9)(x)). (2) 

An 8 x 8 sparse grid has been created by measuring the 
feature vectors j(x) at equally spaced nodes over the output 
of the face detection algorithm described in [4]. j(x) has 
been demonstrated that captures important information for 
the key facial features [5]. 

Subsequently, a feature vector dimensionality reduction 
is pursued by employing PCA. In addition to dimensional- 
ity reduction PC.4 decorrelates the feature vectors and fa- 
cilitates the LDA that is applied next in eigenvdue/eigen- 
vector computations as well as in matrix inversion. Let 

j;(x) = jl(x) - m(x) be the normalised feature vector at 

node x where j,(x) = (ji, i(x),. . . ,j,, is(~))~ and m(x) 
is the mean feature vector at x. Let IV denote the total 
number of frontal images extracted for all persons. Let 
also R(x) be the covariance matrix of the feature vectors 

j’(x) at node x. In PCA we compute the eigenvectors 
that correspond to the p largest eigenvalues of R(x), say 
ei(x), . , ep(x). The PC.4 projected feature vector is given 
by: eT(x) j,(x) = : [ 1 .’ .’ JI (x) = P(x)Jl (x) (3) 

G(x) 

and is of dimension p x 1: p 5 !V. 
Next LDA is applied to feature vectors produced by 

PCX. It is well known that optimality in discrimination 
among all possible linecar combinations of features can be 
achieved by employing LDA [lo]. \Ve are interested in ap- 
plying the LDA at each grid node locally. In the following 
the explicit dependence on x is omitted for notation sim- 
plicity. Let S be the entire set of feature vectors at a grid 
node and Sk be the corresponding set of features vectors 
at the same node extract.ed from the frontal facial images 
of the Ic-th person in the database. Our local LD.4 scheme 
determines a weighting vector vk for the Ic-th person such 
that the ratio: 

is minimised where tik is the class-dependent mean vector 
of the feature vectors which result after PCA. This is a 

generalised eigenvalue problem. Its solution is given by the 
eigenvector that corresponds t.o the minimal eigenvalue o 
D,‘Wk or equivalently by the eigenvector that corresponds 

to the maximal eigenvaiue of WilRk provided that both 

Wk and Rk are invertible. Because the matrix W;iRk 
is not symmetric in general, the eigenvalue problem could 
be computationally unstable. -4 very elegant method that 
diagonalises the two symmetric matrices Wk and Dk and 
yields a stable computation procedure for the solution of 
the generalised eigenvalue problem has been proposed in 
[lo]. This method has been used to solve the generaiised 
eigenvalue problem. 

Let the superscripts t and T denote a test and a reference 
person (or grid), respectively. Let us also denote by xi the 
l-th grid node. Having found the weighting vector vkl for 
the l-th node of the k-th person in the database, we project 
the reference feature vector after PC-4 at this node onto vkl 
as follows: 

j(d) = 61 [Pi (.i($) - ml) - tikl] (5) 

It is seen that a scalar reference feature value results after 
the linear discriminant projection. Let us suppose that a 
test person claims the identity of the Ic-th person. Then 
the test scalar feature value at the I-th node can be derived 
as in (5). The absolute value of the difference between the 
scalar feature values at the I-th node has been used as a 
(signal) similarity measure, i.e.: 

v u Y I 

CL(j(xlt),j(xF)) = b(d) - j(xT)I (6) 

Let us denote by V the set of grid nodes. The grid nodes 
are simply the vertices of a graph. Let also hi(l) denote the 
four-connected neighbourhood of vertex 1. The objective is 
to find the set of test grid node coordinates {xi, 1 E V} 
that yields the best matching. As in DLA [7]: the quality 
of the match is evaluated by taking into account the grid 
deformations as well. Grid deformations can be penalised 
using the additional cost function: 

with dl e = (xl - x0. The penalty (7) can be incorporated 
to a cost function: 

One may interpret (8) as a simulated annealing with an 
additional penalty (i.e., a constraint on the objective func- 
tion). Since the cost function (7) does not penalise transla- 
tions of the whole graph the random configuration x1 can be 
of the form of a random translation d of the (undeformed) 
reference grid and a bounded local perturbation nl? i.e.: 

d=x;+d+nl ; IlwllIvmax (9) 

where the choice of max controls the rigidity/plasticity of 
the graph. It is evident that the proposed approach dif- 
fers from the two stage coarse-to-fine optimisation proce- 
dure proposed in [7]. In our approach we replace the two 
stage optimisation procedure with a probabilistic hill climb- 
ing algorithm which attempts to find the best configuration 
{d: {nr}} at each step. 



3. INCOR.PORATING DISCRIMINAT0R.Y PO\!TER 
COEFFICIENTS IN MORPHOLOGICAL SIGNAL 

DECOMPOSITIOi’i - DYNAMIC LINK 
ARCHITECTURE 

The modeling of a gray-scale facial image region by employ- 
ing morphological shape decomposition (MSD) is described 
in this section. Let us denote by f(x) : V c 2’ + 2 the 
facial image region that can be extracted by using a face de- 
tection module such as the one proposed in [4]. Without any 
loss of generality it is assumed that the image pixel values 
are non-negative, i.e., f(x) 2 0. Let g(x) = 1, Vx : ]]x]] 5 (J 
denote the structuring function. The value 0 = 2 has been 
used in all experiments. Symmetric operators will not ex- 
plicitly denoted hereafter. Given f(x) and g(x), the ob- 
jective of shape decomposition is to decompose f(x) into a 
sum of components, i.e.: 

ftx) = 2 ii(X) 

i=l 

where fi(x) denotes the i-th component. The i-th compo- 
nent can be expressed as: 

fiCx) = [Ii Cl3 7% 91 (X) (11) 

where ii(x) is the so-called spine and 

% g(x) = ig e g 8”’ ‘. e 9)x). 

ni times 

(12) 

An intuitively sound choice for ni g(x) is the maximal func- 
tion in f(x), that is, to choose rzr such that: 

[f 8 (7h + l)g] (x) 5 0 vz E 2). (13) 

Accordingly, the first spine is given by: 

ll(X) = [f 8 n1 g] (x). (14) 

Morphological shape decomposition can then be implemented 
recursively as follows. 

Step 1. Initialisation: f”(x) = 0. 

Step 2. i-th level of decomposition: Starting with 
71, = 1 increment ni until 

[(.f - fl-1) 6 (ni + l)g] (X) 5 Cl. (15) 

Step 3. Calculate the i-th component by: 

fl(X) = 

{ 

p - i-1, e 7% gpi 9 (x). 

l.(x) 1 
(16) 

Step 4. Calculate the reconstructed image at the i-th 
level of decomposition: 

f*(x) = &l(X) + fz(x). (17) 

Step 5. Let n(f - f,) be a measure of the approxi- 
mation of the image f(x) by its reconstruction 

fi(x) at the i-th level of decomposition. In- 
crement i and go to Step 2 until i > h’ or 
d(f - f,-i) is sufficiently small. 

We propose a dynamic link matching with feature vect,ors 
that are extracted from the reconstructed images fi(x) at 
the last K successive levels of decomposition i = L-K,. , L 
for K=15, where L denotes the maximal number of-decom- 
position levels. That is, the grey level information f; at the 
node x of the sparse grid for the levels of decomposition 
i = L - 15,. ? L along with the grey level information f is 
concatenated to form the feature vector J(x), the so-called 
jet [7]: 

j(x) = (f(x), ~^L-Ic(~), . , AL) 63) 

Accordingly, the variant of DLX that results is termed Rfor- 
phological Shape Decomposition-Dynamic Link Architec- 
ture. 

It is well known that some facial features (e.g. the eyes, 
the nose) are more crucial in the verification procedure than 
others. Thus, it would be helpful if we may calculate a 
weighting coefficient that enables discriminating among fea- 
ture vectors extracted from frontal facial images of the same 
person (i.e., the clients) and the ones extracted from frontal 
facial images of the remaining persons in the database (i.e., 
the impostors). To do so, we would like to weigh the signal 
similarity measure at node i given by: 

Cvdi(xfLW)) = Il.i(xf) -.XxY)ll (19) 

using class-dependent DPi(R) so that when person t claims 
the identity of person r a distance measure between them 
is computed by: 

D(t,r) = C DPi(R) G(j(d),j(xY)) 
iCV 

(20) 

where R denotes the class of the reference person r. Let 
mintra(X, i) be the mean intra-class distance and mintcr(Xr i) 
bet the mean inter-class distance for the class X at grid node 
i: 

mntra = E {C,(.i(xf),j(x~))} Vt, f E X (21) 

minter = E { C,(j(x:), j(xr))} VT E X, t E (S - X) 

where S denotes the set of all classes in the database. Let 
(T~~,.(X, i) and &,,,(X, i) be the variances of the intra-class 
distances and the inter-class distances, respectively. A plau- 
sible measure of the discriminatory power of the grid node 
i for the class X is the Fisher’s Linear Discriminant (FLD) 
function or first canonical variate that takes under consid- 
eration both the difference between the two class-dependent 
mean distances and the distance variances in order to yield 
a Discriminatory Power Coefficient (DPC) for the grid node 
i, [Cl]: 

Dpi(x) = (mint.r(X,i) - mntrn(X:i)Y 
KL.,(X~ 4 + &r.(X,i) (22) 

We can see that in (22) the DPi(X) is maximised when the 
denominator ufnter (X, i) + &$,.(X, i) is minimised. This 
can be interpreted as an .WD rule for the variances of the 



clusters. Alternatively, one can use a more relaxed criterion 
of the form: 

Dpi(x) = (7ni”kr(X, i) - nha(X? 4)’ 

(Ti.m(X, +,“tra(x, i) 
(23) 

The denominator of (23) is interpreted as an OR rule for 
the variances of the clusters. 

4. PERFOR.MANCE EVALU.4TION OF THE 
COMBINED SCHESIE,S 

The combined schemes of MDL.4 with linear projections 
and MSD-DLA with discriminatory power coefficients have 
been tested on the MSVTS database [8]. The database con- 
tains both sound and image information. Four recordings 
(i.e., shots) of the 3i persons have been collected. In our 
experiments, the sequences of rotated heads have been con- 
sidered by using only the luminance information at a resolu- 
tion of 286 x 350 pixels. In the authent,ication experiments 
we use only one frontal image from the image sequence of 
each person that has been chosen based on symmehry con- 
siderations. Four experimental sessions have been imple- 
mented by employing the “leave one out” principle. Details 
on the experimental protocol used in the performance eval- 
uation as well as on the computation of thresholds that 
discriminate each person from the remaining persons in the 
database can be found in [5]. We may create a plot of 
False Rejection Rate (FR.R) versus the False .4cceptance 
Rate (F.4R) with the varying thresholds as an implicit pa- 
rameters. This plot is the Receiver Operating Characteris- 
tic (ROC) of the verification technique. The ROCs of the 
MDLA with and without linear projections are plotted in 
Figure 1. In the same plot the ROCs of MSD-DLA with 
and without discriminatory power coefficients are also de- 
picted. The Equal Error Rate (EER) of a technique (i.e., 

E 

Figure 1: R.eceiver Operating Characteristics of 
hIDL.4 with/without linear projections and MSD-DLA 
with/without local discriminatory power coefficients. 

the operating state of the method when F.4R equals FRR) 
is another common figure of merit used in the comparison 
of verification techniques. The EER of MDL.4 with linear 
projections is 6.8% whereas the EER of SIDLA is 9.35 % 
[5]. It, is seen that the incorporation of linear projections 
improves the EER by 2.55 %. It is worth noting that the 

EER of MSD-DLA without local discriminatory power co- 
efficients is 11.89 %. By using this discrimination criterion 
(22), we achieve an EER. of 6.73% following the same ex- 
perimental protocol. The same figure of merit using the 
discrimination criterion (23) is found to be 6.58%. That is, 
a significant drop of 5.3% in EER is report,ed. The compari- 
son of EERs achieved by the proposed schemes is very close 
to the one reported in [2], i.e., EER between 6.0 % and 9.2 
%. However, it should be noted that only the most discrim- 
inant feature value per node has been used in our approach 
whereas the three most discriminative feature values have 
been employed in [2]. 
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