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ABSTRACT

In this study, the eigenfilter approach is applied to de-
signing Infinite Impulse Response (IIR) filters having
an arbitrary magnitude frequency response. A causal
rational transfer function having an arbitrary number
of poles and zeros is achieved. 'T'he procedure works
in the frequency domain. Some numerical examples
showing the application of the presented method to the
design of multiband filters with different gains and dif-
ferent magnitude shape in each band are presented.

1. INTRODUCTION

The cigenfilter approach is an appealing way of design-
ing digital filters, mainly because of the simplicity of its
implementation. In fact, it can be applied to designing
several types of Finite linpulse Response (FIR) or ITR
filters [1]-[8]. 'T'he method consists in expressing the
crror between a target and a digital filter response as
a real, symmetric, positive-definite quadratic form in
the filter coefficients. The error can be referred either
to the time, the frequency domain, or both of them.
The eigenvector corresponding to the minimum eigen-
value yields the optimum filter coeflicients according to
the chosen crror measure. Applying the eigenfilter ap-
proach to the [IR case is more difficult than in the FIR
case. Design of TTR cigenfilters in the time domain has
heen addressed in [5]. A disadvantage of such approach
is that it is more difficult 1o define a frequency weight-
ing function. In {6][7] the cigenfilter approach is applied
to the design of allpass sections with a given phase re-
sponse. By summing up suitable allpass functions a
lowpass or multiband frequency response filter can be
designed {7][8]. Tn this casc, however, the degrees of the
numerator and the denominator of the global transfer
function are rclated to the degrees of the allpass sec-
tions composing the system and can not be completely
arbitrary. In [9] the solution of an eigenvalue problem

yields the TIR filter coefficients, even though the classi-
cal eigenfilter approach, based on the Rayleigh's prin-
ciple [1] and on the search for the minimum eigenvalue
of a positive-definite matrix, is not used.

In this study the cigenfilter approach is used to de-
sign causal 1R filters with an arbitrary number of zeros
and poles, whose magnitude frequency response can be
arbitrarily shaped. The method and the results that
will be shown represent an improvement of the work
presented in [10]. The examples that will be given
in the experimental results section will illustrate how
the proposed method works to design multiband filters
with an arbitrary magnitude frequency response.

2. EIGENFILTER APPROACH TO DESIGN IIR
FILTERS

The main problemn in designing IR eigenfilters is ex-
pressing a measure which indicates the difference be-
tween a targel function and the filter frequency re-
sponse as a quadratic form in the filter coefficients.
This task 1s easier in the FIR case, where the trans-
fer function is not rational.

Let H{(z) be a rational function having M zeros and
N poles (with arbitrary M and N), i.e
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where a;,1 = 0,1....,N, and b;,i = 0,1,..., M, arc
real coefficients. Let H%(w) be a target function rep-
resenting, in the simplest cases, a lowpass, highpass,
bandpass filter frequency response. Suppose H%(w) is
defined in a generic interval Iy = (wk,wk+1) as Hg(w) =
frlw)ed#xl (w), . where fi(w) is a given real function. Con-
sider we are interested in approximating only the mag-
nitude of the target function H¢(w), so that ¢k (w) can
be any arbitrary real function. In the absence of other
information we could assume @i (w) = Rw, with K a



given constant. In general, H%(w) is approximated by
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The function D{w) devends on the poles of H{2) For
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in the passband, e/* is close to the poles of //(z) and

l D(w) | can take on small values. However, since poles
can not be placed on the unit circle, | D(w) | is al-
ways nonzero valued in useful filters. Minimizing /7 (w)
in some sense means a weighted minimization of the
error function e(w). where D{w) acts as the weighting
function. Lower weight is assigned to regions in cor-
respondence to the poles closer to the unit circle, but.
since a nonzero weighting funciion is used, infinite or a

very large value of the error ¢(w) at these frcquenmes
is not exnected. Clonsider the global cost funclion ®
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where 3, is a positive constant that weights the k-th
interval cost function ¢ given by
. —wi 9
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where Wy (w) is a positive weighting function. If we

define
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where e, (w) = [1 ™0 —iL@T “then the cost func-

tion ¢, can be expressed as
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where superscript 'I' and * denote the transposition and

Cor l.unoh v onerationg regnectivaluy (A* — A cinee the
gation operations, respectively (A* = A since the
filter coeflicients are assumed real). Therefore, ¢y is
given by
¢r = ATPLA (10)
wliere
P. = __:“A"T C(w)CT (w)Wi (w)dw+
(11)
+ [ Cp(w)CF (w) Wi (w) dw

is a symmetric, real, positive-definite (M + N + 2) x
(M + N + 2) matrix. The global cost funciion ® can
be expressed as

@ =AT(>_ BPir)A = ATPA. (12)
k

By using the eigenfilter approach, the optlmal filter
coefficients that minimize the cost function @ are the
elements of the eigenvector of the matrix P correspond-

ing to the minimum PlO‘PYl\'A]HP The annni,\hnn of

ing he minimum alue. The tatior
the matrices Py can be pcrl"ormed numerically in each
band (wg,wk+1)-

The procedure that has been described gives the co-
efficients that minimize the cost function in a weighted
least-square sense. However, the designed frequency
response may have a behavior not completely satisfac-
tory. The reasons why this happens and suitable coun-
termeasures are now discussed.

In this si.udy we arc interested in approximating
only the magnitude of H%(w). However, the cost func-
tion F‘(“\ a_lbo depends on «]g(z_;,) ie.. the phase of

Hd(.u). lheref()re, different frequency responses can
be obtained according to the choice of p{w). In the ab-
sence of any information we could assume ¢p(w) = Kw,
where K is a given constant. This choice, hovever,
leads to an amplitude frequency response that can con-
siderably differ from the target function | H4(w) |. An
iterative procedure we have found to be effective to
reach well-behaved filter frequency responses is the fol-
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p and let H'”’( /) be the corresponding frequency re-
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step. Suppose (") (w ) LH=(w) and compute the
coefficient vector A(™) by solving the eigenfilter prob-
lem. At the first step ¢(©)(w) is assumed linear.

A [urther improvement can be obtained by includ-
ing within the procedure a function of the error com-
puted at the n-th step. In previous articles [1][4][7] a
recursive updating of the weighting function was in-
troduced to obtain an almost equiripple frequency re-
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interval [, at the n-th iteration as
el w) = | [ W) [ = | HP @) ] (13)

then the weightling function to be used in the (n+1)-th
iteration is

W',f."+”(w) = H",fn)(w) (-‘l'lv(efc")(w)) (14)

where env(g(z)) is the envelope of the positive function
g(x) (we have used a linear interpolation between the
local maxima of g(z)). By using this approach. larger
weights are assigned to frequencies where larger magni-
tude errors occur. The function Ir’V,Sn)(w) is normalized
at each step so that 1/(2x) flk l‘i’,f”)(w)dw = 1. The
choice of the 3i’s determines the weights to be assigned
to the different intervals.

3. EXPERIMENTAL RESULTS

The effectiveness of the presented method can be shown
through some numerical examples. The integrals that
appear into the definition of the matrices P have been
computed numerically by using a grid of 100 points in
each band. The iterative procedure stops when max(|

A+ A ) < ey or max, max,(|| I-[,£71+1)(w) | -

| [I,‘;n)(w) |‘) < ¢a (in our design examples we used ¢ =

10~* and €¢; = 107%). The filter characteristics arc
given in the frequency domain by using the normalized
frequency F = w/(2m).

Example 1. Lowpass filter with passband for 0 <|
F |< 0.1 and stopband for 0.12 <| F |< 0.5. The
transition band is considered as a “don’t car¢” band.
By using M = 8 and N = 5 we have obtained the result
shown in Fig. 1. The weights {8x} = {1, 1} were used.

Example 2. Multiband filter with a linearly shaped
passband for 0 <| F |< 0.2, a constant gain (equal to
0.7) passband for 0.4 <| /¥ |< 0.5 and an attenuation
band for 0.25 <| F' |< 0.35. The transition band are
shaped with a fifth order polynomial with null deriva-
tives at the points where the adjacent passband and
stopband are joined. The target function is shown in
Fig. 2 with solid line. By using M =11 and ¥ =7
we have obtained the frequency response shown in Fig.
2 with dashed linc. The weights {8x}={1, L, 5, 1. 5}
were used (the weights refer to passbands, transition
bands and attenuation band in the order of increasing
frequencies). Fig. 3 reports the designed ragnitude
frequency response in logarithmic scale.

Example 3. Multiband filter with a constant gain
(equal to 1) passband for 0 <| F |< 0.1, a constant
gain (equal to 0.5) passband for 0.13 <| F |< 0.3 and
an attenuation band for 0.33 <| F |< 0.5. Also in

this case fifth order polynomial shaped transition bands
have been used. The target function and the frequency
response obtained with A = 15 and N = 9 are shown
in Fig. 4 with solid line and dashed line, respectively.
The designed magnitude frequency response in loga-
rithmic scale is shown in Fig. 5. The weights {8k }={5,
1,5, 1, 10} were used.

As can be seen, in all the cases that are presented
the target function has been closely approximated by
the designed magnitude frequency responses.

4. CONCLUSIONS

In this study a method for applying the cigenfilter ap-
proach. based on the Rayleigh’s principle, to the design
of TTIR. digital filters is shown. The method works in the
frequency domain and allows to design filters with an
arbitrary magnitude frequency response. The number
of zeros and poles of the filter transfer function is also
arbitrary.
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Figure 1. Example 1. Frequency response of the filter

designed with orders M =8 and ¥ = 5. Figure 4: Example 3. Target function (solid line) and

designed frequency response obtained with orders M =

: _ - ] 15 and N = 9 (dashed line).
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designed frequency response obtained with orders M = ) ) )
11 and N = 7 (dashed line). Figure 5: Example 3. Designed frequency response in
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