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ABSTRAC’I‘ 

In t.his study, the cbigenfilter approach is applied to de- 
signing Infinite impulse Response (IIR.) filters having 
an arhit,rary rna.gnit.ude frequency response. :2 causal 
rational transfer function having an arbilrary nurnbc>r 

of poles and zeros is achieved. ‘I’tic procedure works 
in t.hc, frequency clornai n. Some nuiI1(~rical exarnples 

showing the: application of the present.ed rncthotl to t,hc 
dc,sign of mult,iband filters with different gains and dif- 
fer:rcnt rnagnit.ude shape> in each band are present,ed. 

1. TN’l’ltODUCTION 

The c>igc!rifilter approac% is an appcka.ling way of design- 

ing digital filters, rriainl; because ol’ t.he simplicity of its 
implcrrlerltat.ion. In fact. it. ca.n he applied to designing 
several t.ypcs of Finite Impulse Response (FIR) or IIR 
filters [l]-[8]. ‘I’hc method cons&s in expressing t ho 

error between a target and a. digit,al filter response as 
8 rea 1, symmet.ric. posit:ive-dc>finite quadrat#ic form in 
t.he filter coefficicnt.s. ‘The error (‘an be referred either 
to the time, t,he frequency domain, or both of t.hem. 
‘I’he eigenvector corresponding to the minimum eigen- 
value yields the opl.irnum filter cocfiicients according t,o 
t.he chosen error Ineasure. Applying the eigenfiltcr ap- 
proach to the IIR case is more difficult, than in the FIR 
(YW. Design of ITR. c+&ilters in the time domain has 
lmn addressed in [.;I. ,1 disa.dvant agct of such approach 
is 1 hat it, is more difTic.ult, to define a I’rt~quency weight,- 
ing Tr~riction. In [6][7] tl IV c>igenfilt.er i~pproach is applied 

t,o the tl(>sign of nllpa.ss w:t,ions with a given phase re- 
sponse. By surnrning up suitable allpass func:Cons a. 

lowpass or mult,iband frequency response filter can bc: 
designed [7][8]. I n t,l 11s cast. however, t,he degrees of t,he 

numerator and t.hc, denominator of t.he global transfer 
function arc related to the clcgrees of the a.llpass sec- 
tions colllposing t.he systc,nl and can not be complet.ely 
arbitrary. In [9] t.hc: solution of 3.n eigenvaluc problem 

yields t.he TTR filter coefficients, even though the classi- 

cal cigenfiltcr approach, bawd on the Rayleigh’s prin- 
ciple [l] and on the search for the minimum eigenvalue 
of a positive-definit,e matrix, is not used. 

In this study the cigenfilter approach is used to de- 
sign causal I I R filters wit,h an arbitrary number of zeros 
and poles, whose magnit.ude frequency response can be 

arbitrarily shaped. The method and the results that 
will be shown represent an improvement of t,he work 
presented in [lo]. Tl IP examples that will be given 

in the experimental results section will i1lustrat.e how 
t.he proposed method works to design multiband filters 
with an arbitrary ma.gnitude frequency response. 

2. EIGENFILTER APPROACH TO DESIGN TIR 
Fl CI’ERS 

The main problcin in designing IIH cigcnflters is ex- 

prchssing a measure which indicat,es the difference be- 
tween a target function and the filter frequency re- 

sponse as a quadratic form in the filter coefficients. 
This task is easier in the FIR case, where the t,rans- 
fer frinction is not rational. 

Let H(Z) be a rational function having M zeros a.nd 
:V poles (with arbitrary ~24 and N), i.e., 

II(z) = 
b. + bit-’ + . + 62~~” W(z) _ 
00 + np-l + . + a,~rlv D(z) 

(1) 

whew ai:,i = 0: 1.. . .~ :I’, and bi! d = 0, 1:. .! AI. arc 

rwl coefficic,nts. Let, If “(ti) be a target, function rop- 

rc>scrlt,ing, in the simplest. cases, a lowpass, highpass, 
barldpiLSS filt,er frequency response. Suppose !jd(ti) is 
defined in a generic interval Ik = (wk, wk+l) as H;(U) = 
fk(~)ej’+‘~(~!. where fk(w) is a given real function. Con- 

sider we are interested in approximating only the mag- 
nitude of the target, function Hd(u), so that Pi can 
be a.ny arbitrary real function. In the absence of other 
informal.ion we could assume pk (w) = Ii’w, with I< a 



given constant,. III general, H”(w) is approximat.ed by 
H(w)=M(t) I.=f)4 so t.llat the error function 

is minimized in sornc sftnse. The fnnctSion E(U) is 1101 
linear in 1.l~ 0i’s and hi’s iuid thcrcli)re 11 E(U) 112 is not. 
a C~lladri~tic: form in I hc> liIt,er cocfiic.ients a.s in t,hc V113. 
ca.se. Tliorc~li)re, a new function rc~latcd t.0 i(ti) tiinst. 

be usctl. (:orisitler 

I:(i) = E(S) /l(u) (3) 

and let Ek(W) hc the funct.iori E’(w) in the interval rk, 
that, is 

The funct,ion D(S) tlcpencls on the poles of H(r). For 
LJ in the passl~mcl, ei& is close to the poles of I1 (2) and 
1 /J(w) 1 can t.iikc on small values. Ilowever, since poles 
Cilll IlOt. be I>liL(XYl 011 t.h(> unit. circle, 1 0(-J) I is itl- 

Wil\iS nonzero valued in useful filkrs. Minimizing K(d) 
in sornc sense means a weighted minirniza.tion of the 
error function E(U). where I)(d) act,s as the weighting 
funct ion. Lower weight is assigned to regions in cor- 

respontknoe to the poles closer to the unit circle! but. 
since a noiixcro weigtit,ing function is used, infinite or a 
very large vall~(~ of t.hc: (‘rror E(LU’) at these frequencies 
is not expected. (T!onsidcr the glOl)iCl cost function @ 
given by 

where [& is a positive constant that weight.s the k-th 
int,erval cost I’unction $k given by 

A = [a0 (I~ (1.~ hO b, b,\# (8) 

where c:~ (r~) = [l e-.ju e -.j Lw]T then the, cost fmc- ~ 
tion @k ca.n be expressed a.s 

where superscript ‘1‘ and * denote the transposit,ion and 
conjugation operations, respectively (A* = A since: t.he 
filter coefIicients are assumed real). Therefore, & is 

given by 

where 

Cjk = A=PkA (10) 

pk = s-“” -d’k+l c;(“‘)c~(‘d)\+-k(Ld)dW+ 

(1.1) 
+ ,j-Tkk+l c;l.(~)c~(‘+&&‘+iLd 

is a symmetric, real, positive-definite (M + 1%’ + 2) x 
(M + N + 2) mat,rix. The global cost function @ can 
be expressed as 

@ = AT(x /$Pk)A = ATPA. 
k 

(12) 

Hy using the eigenfilter approach, the optimal filter 

coeflicients that minimize the cost, function @ are the 
e1emcnt.s of the eigenvector of the matrix P correspond- 
ing to I he minilnum eigenvalue. The computation of 
the mal.rices Pk can be performed numerically in each 

band (‘Jk,Lv’k+]). 
The procedure that has been described gives the co- 

efficicnts that rninimizc the cost function in a weighted 
least-square sense. However, the designed frequency 
response may have a behavior not completely saMac- 

t,ory. The reasons why this happens and suitable coun- 
krmeasurcs are now discussed. 

In this study we arc interested in approximating 
only the rnagnitude of Hd(u). However, the cost func- 
tion E(U) a.lso depends on p(w). i.e.. the phase of 
Hd(u). ‘Therefore, different frequency responses can 
be obtained according to the choice of q(ti). In the ab- 
sence of any information we could assume q(w) = I<w, 
where Ii is a given constant. This choice, hovever, 
leads t,o an amplit,ude frequency response that can con- 
siderably differ from the target function I Hd(u) 1. An 
iterative procedure we have found to be effective to 
reach well-behavcd filter frequency responses is t,he fol- 

lowing. Let Acn) bc the coefficient vector at the n-th 
step and let H(“)(w) be th.. e corresponding frequency re- 
sponse. Let P(~)(U) be t.he phase of Hd(u) at the n-th 
step. Suppose P(~~)(G.) = Lli(“-l)(w) and compute the 
coeficicnt. vector A(“) by solving the eigcnfilter proi)- 
lem. At the first st.ep P(“)(U) is assumed linear. 

:1 further improvement can be obtained by includ- 
ing within the procedure a function of the error com- 
puted at the n-th step. In previous articles [1][4][7] a 
recursive updating of the weighting function was in- 
troduced to obtain an almost equiripple frequency re- 
sponse. This approach can be used here to reduce am- 
plit,ucle errors. If we define t,he magnitude error in the 



int.erval Ik at, the n-tli it,erat,ion as 

ey(Ld) = 1 I //)$d) I - 1 fp(j;) 1 I. (13) 

t.hen the weighting function to be IISWI in the (n+l)-th 
itc>r;ll,iori is 

I/t;l’yd) = wj”‘(;c;) w(p(w)) (14) 

whore env(g(r)) . . t.l is ic f~~~vf~lopc of the positive furict ion 
s(z) (we have used a linear intcrpolat8ion bet.ween the 
local maxima of g(r)). BU. v using this approacll. I;hrg(:l 
weights are a.ssignecl to frcqucncies where Iargcr lrlagn- 

tude errors occur. The (‘unction We”’ is norma.lized 

iit each st,ep so that. 1/(2~) Jr, I~l~~“‘(w’)d~ = 1. The 
choice of bhe &‘s d~~t.c~rrnines the weights to be assigned 
to the different int c:r\:als. 

The efrect,ivc>ness of t.he presented met.hod can be shown 
through some numtrical examples. ‘I’he integrals that 
appear into the definit.ion of the matrices Pk have been 
computed numerically by using a grid of 100 points in 
each band. The iterative: procedure stops when max( I 

A(“+l) _ Ai”) I) < El or rriilxk ma.L( 1 /~!~“+‘)(id) I - 

1 lp(~) II) < (2 (in our design (:xamples we Ilscd ( I = 

lW4 and ~1 = 10-s). The filt,c,r cha.racterist,ics arc 

given in the frequency domain by using the normalized 
frequency F = A-/( 27r). 

Esalnplc 1. Lowpass filter with passband for 0 <I 

F I< 0. I and at,opbancl for 0.12 <I F I< 0.5. ‘I’hc 

t,ransit,ion band is considered as a. “don‘t cart:” b;lnd. 
I3y using M = 8 and X = 5 we have obtained t,he result, 
shown in Fig. 1. Tht: wright.s {ak} = { 1, 1) were used. 

I’:xample 2. ~lult.il)arld filt.er wit.11 a linenrly shaped 

pnsslx~i~d for 0 <I F I< 0.2, a constant, gain (equal to 
0.7) I)assband for 0.4 <I I’ (5 0.5 and ill1 at,tenuat,ion 
hand for 0.25 <I F I< 0.35. The transition band are 
shaped with a fifth order polynomial with null cleriva- 
t,ives at. t.ho points where the adja.cent passband alId 
st.opband arc joined. The t.;lrgpt fun&on is shown in 

Fig. 2 with solid line. By using :\I = 11 and :2: = 7 
we have obtained thf: frequency response shown in Fig. 
2 wit,h dashed lint. The weights {[&}={I, 1: 5, 1, 5) 
were used (t,he weights refer to passbands, transition 
bands and attenuation hnd in the order of increasing 

frequencies). Fig. 3 report,s t,he clesignc~d magnitude 
frequency response in logarithmic scale. 

I~:sample 3. Mult.ibilntl filter with a constant. gain 
(eqllill I80 1) passbancl for 0 <I F‘ )I 0.1, a constant. 
gain (equal to 0.5) passband for 0.13 <I F I< 0.3 and 
an at.tenllnt.ion band for 0.33 <I F I< 0.5. Also in 

this case fifth order polynomialshaped transition bands 
ha.ve been used. The target function and t.ho frequency 
response obta.ined wit,h M = 15 and IV = 9 are shown 
in Fig. 4 wit.h solid line and dashed line, respectively. 
The designed magnitude frequency response in loga- 

rithmic scale is shown in Fig. 5. The weights {bk}={5: 
1, 5, 1, lU} were used. 

As can be seen, in all the cases tllab are presented 

t.he target function has been closely approximated by 
the designed magnitude frequency responses. 

In this st,udy a method for applying t.hc eigenfilter ap- 
pro;l<‘h. ba.sed OII the Rayleigh’s principle, 1.0 the design 
of IIR digital filt.ers is shown. The method works in t,he 

frequency domain and allows to design filters with an 
arbitrary magnilude frequency response. The number 
of zeros and poles of the filt.er transfer function is a.lso 

arbit,rary. 
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Figure, 3: Exalnple 2. Designed frequency response 
logarithmic scale. 
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Figure 1: Example 1. Frequency response of the filter 
clesigned with orders M = 8 and :V = 5. 

I 
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Figure 2: Example 2. Targc,l. function (solid line) and 
designctl frequency response obtained with orders A1 = 
11 and N = 7 (da&ccl line). 

Figure 4: Example 3. Target function (solid line) and 
designed frequency response obtained wit,h orders M = 

15 and N = 9 (clashed line). 
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Figure 5: Example 3. Designed frequency response in 
logarithmic scale. 


