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ABSTRACT 

WC present an approach for the enhancement of speech signals cor- 
rupted by additive white noise of Gaussian statistics. The speech 
enhancement problem is treated as a signal estimation problem 
within a Bayesian framework. The conventional all-pole speech 
production model is assumed to govern the behaviour of the clean 
speech signal. The additive noise level and all-pole model gain 
are automatically inferred during the speech enhancement process. 
The strength of the Bayesian approach developed in this paper lies 
in its ability to perform speech enhancement without the usual re- 
quirement of estimating the level of the corrupting noise from “si- 
lence” segments of the corrupted signal. The performance of the 
Baycsian approach is compared to that of the Lim B Oppenheim 
framework, IO which it follows a similar iterative nature. A signif- 
icant quality improvement is obtained over the Lim B Oppenheim 
framework. 

all-pole model are related to hyperparumerers within the Bayesian 
framework [l3, 15. 141. The optimisation of these hyperparame- 
ters within an iterative framework leads to an estimate of the clean 
speech signal and the coefficients of the all-pole, or equivalently 
Linear Prediction (LP), model. 

1. INTRODUCTION 

Interest in the field of speech enhancement has grown rapidly in 
the past three decades. As such, various approaches to speech en- 
hancement have been proposed and developed [3,5, Ill. The gen- 
eral aim of speech enhancement is to remove the corrupting noise 
from the signal in order to improve its perceptual aspects of quality 
and intelligibility. 

The iterative nature of the Bayesian scheme that we propose 
in this paper is similar to that proposed by Lim & Oppenheim 
[IO] (see also [8]). Lim & Oppenheim’s system assumes an un- 
derlying all-pole model for the speech signal and, starting from 
the noisy speech signal, obtains alternate estimates for the all-pole 
model coefficients and the clean speech signal in an iterative man- 
ner. The main difference between the Bayesian scheme developed 
here and Lim & Oppenheim’s framework is that whereas Lim CG 
Oppenheim’s framework requires the detection of non-speech ac- 
tivity segments in the noisy speech in order to estimate the energy 
of the corrupting noise and subsequently the all-pole model gain, 
our proposed method does not. The detection of non-speech activ- 
ity segments in noisy speech is also a feature of speech enhance- 
ment algorithms which are based on Hidden Markov Modclling 
[4], spectral subtraction [1,2], and signal subspace decomposition 

[6,91. 

One of the primary concerns in developing an application- 
specific speech enhancer is the nature of the noise corrupting the 
speech signal. The wide variety of situations in which corrupting 
noise can occur give rise to a large number of possibilities with 
regard to the nature of the noise and the type of assumptions re- 
quired in developing a relevant enhancement methodology. Noise 
may, for example, be broadband or narrow band. It may be addi- 
tive: as in the case of background noise generated in the interior 
of a car. or an aircraft cockpit, convolutional; for example micro- 
phone noise, reverberative, impulsivectc. In this paper, we make 
the assumption that speech is degraded by additive white Gaussian 
noise which is uncorrelated to the clean speech signal. We focus 
on improving the overall quality of the noisy speech by treating the 
speech enhancement problem as a signal estimation one in the time 
domain. The conventional all-pole speech production model is as- 
sumed to govern the behaviour of the clean speech signal [ 161. The 
signal estimation problem is then formulated in a Bayesian frame- 
work where the variance of the additive noise and the gain of the 

This paper proceeds by first defining the speech enhancement 
problem. A brief overview of the Lim & Oppenheim approach 
then follows. The proposed speech enhancement scheme is then 
theoretically developed. Results of the application of the Bayesian 
scheme are then given and contrasted to Lim and Oppenheim’s 
approach for stationary noise environments. 

2. PROBLEM STATEMENT 

Our aim is to recover the speech signal, s, from an observed signal, 
y, which can be described as : 

y=s+v (1) 

where v is a zero-mean independent identically distributed (i.i.d) 
white Gaussian noise signal with variance a:. The signals v and s 
are assumed to be uncorrelated. 

It is assumed that the clean speech signal. s, is described by an 
LP model of order k such that : 

s(n)=s”(n-ll:n-k)a+Gu(n) (2) 

where 

s(n-l,n-k)=[~(n-l)y(~rt-~)...Y(R-k)] (3) 
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and 
a = [a. (1) a (2). (1 (k)] (4) 



u (n) is a zero-mean unity variance i.i.d. Gaussian process and G 
is the gain term of the corresponding all-pole modelling filter, 

3. LIM & OPPENHEIM’S APPROACH 

The practical application of the scheme relies on a sub-optimal 
optimisation procedure. The procedure can be viewed as a two- 
stage iterative process which. at the i”’ stage, derives an estimate 
for the clean speech, O”, which relies on the estimate of the all-pole 
model parameters. ai. The estimated speech is then used to obtain 
an estimate of the all-pole parameters a’+‘. The procedure then 
continues until some convergence criterion is met. 

In order to obtain an estimate of the clean speech, s, its poste- 
rior probability given the observations, y and the LP coefficients, 
a is expressed as : 

p (s/a, y: G! CT?) = 
~(yla,s:G,u%)p(sla,G,aF) (5) 

P bla, G, d) 

Since the denominator of equation (5) does not depend on s, and 
a is considered to be fixed within the process of estimating s, we 
require the maximisation of the product of the two terms appearing 
in the numerator of (5) with respect to s. The posterior probability 
of s can thus be written as : 

p(sla!~.G,a~) XP(YI a, s. G: nz) p (s/a, G, ai) (6) 

The conditional probability of the noisy observations y is writ- 
ten as : 

p(yla,s,G,a&) = (&)+exp- ($4,) (7) 

where N is the length .of the speech segment that is being analysed 
and EY = i (y - s)’ (y - s). The likelihood p (sla, G, a:), on 
the other hand. is : 

p(sla,G) = (&)‘exp [-&E,] (8) 

where E. is the total squared prediction error: 

E,=; 2 s(r)--&n-i) 

2 

(9) 
R = n !, i=l 

and 71~~:n~. are the limits over which the prediction error is com- 
puted. 

From equations (6), (7), and (8). we note that the posterior 
probability of s can be written as: 

p(sla:y,G,az) cc exp- 
( 

$Ey + &Es 
> 

(10) 

‘x exp ( -MS ) (11) 

Setting the derivative of M, with respect to s to zero, we obtain a 
maximum CI posteriori estimate of the clean speech : 

SMAP = ( $1, &q-l (+y) I 
where I is the identity matrix and B is a matrix of correlations of 
the LP coefficients [l7]. Lim & Oppenheim construct a Wiener 

filter from the estimated all-pole model in order to approximate 
the action of the estimator sNAP appearing in equation (12) (see 
[IO]). The Weiner filter requires estimates of the noise variance 
cr,” and the all-pole model gain. G. a: is estimated from non- 
speech activity segments of noisy speech while G is obtained by 
utilising Parseval’s theorem. In the LP coefficient estimation stage, 
an autocorrelation estimator is used on the estimated speech. 

4. THE BAYESIAN FRAMEWORK 

We make the two following definitions in terms of the variance of 
the corrupting noise, a:, and the gain of the all-pole model, G: 

where C and 77 are termed hyperparametcrs [ 12. 141. 

The posterior probability of the clean speech, s. given the 
noisy observations, y, is expressed as : 

PCSIY) = 
s 

P(sla.C,17!Y)P(a.C,7?lY) da 4 4 (15) 

The evidence approximation [7, 131 is utilised in order to evaluate 
the integrand given in equation (15). Specifically, it is assumed that 
the posterior probability of [a! C? r/] exhibits a strong peak around 
the most probable values of these parameters, [a. <. q],,,,, , com- 

pared to the variation of p (sla. <. n! y) in that region. As such, 
the integral representing the posterior probability. p (sly), is ap- 
proximated as : 

P (sly) z p (4 [a, C, 771mp? Y) (16) 

Now, the posterior probability of a. <. 77 can be written as : 

(17) 

The prior p (a, <, 77) is assumed to be uniform. p (yla, (, 77) can 
thus be used to infer the optimal, or most probable, values of 
[a; <: 711. The term p (yla, C, 77) is the normalising term appearing 
in the following expression and is called the evidence: 

p (sla, <, 17 y) = P (Y Is, C) P (sl+ 17) 
* I 

P (yla! <! 17) 
(18) 

The numerator terms in equation (I 8), which appeared when dis- 
cussing the Lim & Oppenheim system in a different form as cqua- 
tions (7) and (8) are re-written as follows : 

P(Yb!C) = &XP(-WY) (19) 

P(+,d = $ exp (-9E.) (20) 
s 

whereZ, = (y)% 
written as : 

and Z, = (%) ’ The evidence can now be 

ubhC!d = & 
s 

exp - (<EY + I&) ds (21) 
Y s 



Defining M (s) = CEy + rlE., the integral in equation (21) can 
be evaluated after performing a second order Taylor expansion of 
M (s) around s,,,~, the most probable value of s: 

!21 (s) = 12 (s,.,,) + ; [s - s ,,,p I“ c [s - Smp] (22) 

where C is the Hessian matrix given by : 

c = VCA!f (s) (23) 

= (1-t qB (24) 

and B is given by B = VCE,, which is analogous to the matrix of 
correlations of the LP coefficients which was encountered earlier 
in equation (12) of the previous section [ 171. 

Setting V&f (s) to zero. the most probable estimate of s for 
any {, 17, B, is obtained in a similar fashion to equation (12) : 

S mp = (<I+ qB)-'CY (25) 

Substituting equation (22) into (21). we use the standard Gaussian 
integral to obtain an analytical expression for the evidence : 

PbhC~77) = 
exp - :I4 (S,“,,) 

2s 2, 
(27r)% det-+c (26) 

We can now write the log evidence from equation (26) as : 

logp (yla. C7 0) = -<Ey - @:“” - ; log 271 

-~logde+C+ Glog< 

+ ; log ‘I/ (27) 

where EymP and qEzP denote the values of the respective functions 
evaluated at s,,, as expressed in equation (25). 

4.1. Derivatives of the Evidence 

The properties of the log evidence can now be exploited in order to 
obtain the estimate of the speech signal s.,,, at the most probable a, 
<, and 7. This is done by setting the derivatives of the log evidence 
with respect to C, n, and a to zero such as to examine the condi- 
tions that are satisfied at the maximum of the log evidence surface. 
The conditions satisfied at the maximum of the log evidence are 
governed by the following relationships (Saleh, 1996): 

2<E,“p = H (28) 
2qEh”” = ly - 6, (29) 

(30) 

where Xi arc the eigenvalues of r/B, and 6’ is the number of “well- 
determined” speech samples: 

(31) 

0 is analogous to the number of well-determined model parameters 
7, which occurred in (MacKay. 1992) within the context of param- 
eter estimation for interpolation models to indicate the number of 
model parameters well determined by the data. 

5. IMPLEMENTATION CONSIDERATIONS 

We implemented the Lim & Oppenhcim iterative framework in 
the time domain through the evaluation of equation (12) on the 
speech estimation stage, rather thanutilising a Weiner filter. Since 
the original Lim & Oppenheim system was delined for an autocor- 
relation estimator, the analysis of a speech frame was carried after 
multiplying it by a Hamming window. The resulting enhanced 
speech is therefore a reconstruction of the windowed speech.An 
overlap-and-add method was thus maintained, whereby successive 
analysis frames were advanced by half the window size. $, and 
the overlapped segments added. 

The Bayesian scheme was implemented iteratively in the same 
manner as the Lim B Oppenheim system whereby the estimation 
of the clean speech and the LP coefficients is carried out alternately 
on two separate stages. The optimisation of the log evidence term 
in equation (27) is performed by iteratively solving equations (28), 
(29) and (31) in order to obtain optimal values for < and r7 which 
arc substituted into equation (25) to obtain a clean speech esti- 
mate. The estimation of the 1-P coefficients is then carried out 
from the speech estimate just obtained using the conventional co- 
variance estimator. The LP coefficients are utilised again within 
equations (28), (29) and (3 I) to obtain a clean speech estimate, and 
so on. This procedure leads to an estimate of the joint likelihood of 
the speech and the LP coefficients given the observed noisy data, 
p (a: sly). In order to circumvent any effects of discontinuities 
between the frames, an overlap of 2k samples between successive 
analysis frames was maintained. 

6. RESULTS AND DISCUSSION 

The Bayesian scheme, and Lim & Oppcnheim framework, were 
applied to the following utterance, sampled at IO KHz, and spoken 
by male and female speakers : 

“Your sum shouldn’t come to seven three seven point 
zero seven six.” 

A frame size of duration 25.6 ms was maintained in the analy- 
sis, which was performed using LP models of order 14. For both 
speakers, the utterance was corrupted with additive white Gaus- 
sian noise resulting in input signal-to-noise (SNR) ratios of 5. IO, 
15, and 20 dB. The input SNR is defined as : 

(32) 

where s(n) and d(n) refer to the clean speech and the noise respcc- 
tively. 

Perceptually. the noise removal effect of enhancement was 
clear after either 3 or 4 iterations for both methods. although a 
continuous “musical” tone was noted to be present in the enhanced 
speech. The “musical” tone is a feature of the majority of current 
model-based speech enhancement algorithms and is attributed to 
narrowband residual signals with time-varying frequencies which 
result from the approximation of the LP spectra of the clean speech. 
For iterations higher than 4, informal listening tests showed that 
there was no audible improvement in the quality of enhanced speech. 

Output SNR measures were obtained after 3 and 4 iterations, 
and the results of both methods were compared under the same 
input SNR conditions. The output SNR,, is defined as : 

SNR, = lolog,, 
Cz=, s2 (n) 

Cz==, [s (n) - 3 (7L)12 
(33) 



Bayesian iterative Male SNR, (dB) Female SNR, (dB) 
scheme Iteration Iteration 

Input SNR 3 1 4 1 3 1 4 
5 11.08 ] 10.63 ] 11.52 ] 11.18 

1 

IO 14.91 14.73 14.93 14.79 
15 18.79 18.59 18.80 18.60 
20 22.60 22.14 22.32 21.83 

Table I : Output SNR measures of enhanced speech obtained with 
the Bayesian iterative scheme, and the Lim & Oppenheim system 
in stationary noise environments. 

Table I summarises the results for the Bayesian scheme and Lim B 
Oppenheim’s system. In all cases, the output SNR is consistently 
higher at 3 iterations, than at 4. The decrease in output SNR values 
from 3 to 4 iterations is generally low and varies from 0.14 dB to 
0.55 dB. It is also clear from Table I that the Bayesian iterative 
scheme achieves output SNR values which are higher than those 
obtained with the Lim CG Oppenhcim system for all the input SNR 
values considered. 

The SNR improvement (between the input and output SNRs) 
generally becomes smaller as the input SNR gets larger for both 
systems. For the input SNR value of 20 dB, negative improve- 
ment of 0.7-0.9 dB in output SNR is obtained with the Lim & 
Oppenheim system. This is in contrast to “positive” improvement 
of around at least 2 dB for the Bayesian scheme. Informal listen- 
ing tests by a number of subjects confirmed a preference towards 
the Bayesian scheme over the Lim B Oppenheim system in all the 
cases which are considered in Table I. 

7. CONCLUSIONS 

A Bayesian approach for speech enhancement whereby the cor- 
rupting additive noise can be optimised, as a hyperparameter, from 
the noisy speech was introduced. The Bayesian scheme was con- 
trasted to the Lim & Oppenhcim system. Both systems rely on the 
estimation of an underlying all-pole model and follow the same 
iterative scheme of alternately estimating the all-pole model pa- 
rameters and the clean speech. Informal listening tests indicated a 
consistent preference towards the Bayesian scheme in comparison 
to Lim & Oppenheim’s system when enhancement was performed 
on speech corrupted with additive white noise. The improvements 
in SNR were also consistently greater for the Bayesian scheme 
than Lim & Oppenheim’s system. 

The results given in this paper demonstrate the huge poten- 
tial of Bayesian methods in speech enhancement. The ability to 
infer the corrupting noise variance from the noisy speech signal, 
based on the underlying all-pole model, is a useful step towards 
the development of a unified comprehensive Bayesian view of the 
all-pole modelling of noisy speech. 
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