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ABSTRACT

We present an approach for the enhancement of speech signals cor-
rupted by additive white noise of Gaussian statistics. The speech
enhancement problem is treated as a signal estimation problem
within a Bayesian framework. The conventional all-pole speech
production model is assumed to govern the behaviour of the clean
speech signal. The additive noisc level and all-pole model gain
are automatically inferred during the speech enhancement process.
The strength of the Bayesian approach developed in this paper lies
in its ability to perform speech enhancement without the usual re-
quirement of estimating the level of the corrupting noise from *si-
lence” segments of the corrupted signal. The performance of the
Bayesian approach is compared to that of the Lim & Oppenheim
framework, to which it follows a similar iterative nature. A signif-
icant quality improvement is obtained over the Lim & Oppenheim
framework.

1. INTRODUCTION

Interest in the field of speech enhancement has grown rapidly in
the past three decades. As such, various approaches to speech en-
hancement have been proposed and developed {3, 5, 11]. The gen-
eral aim of speech enhancement is to remove the corrupting noise
from the signal in order to improve its perceptual aspects of quality
and intelligibility.

One of the primary concerns in developing an application-
specific speech enhancer is the nature of the noise corrupting the
speech signal. The wide variety of situations in which corrupting
noise can occur give rise 10 a large number of possibilities with
regard to the nature of the noise and the type of assumptions re-
qguired in developing a relevant enhancement methodology. Noise
may, for example, be broadband or narrow band. It may be addi-
tive: as in the case of background noise generated in the interior
of a car, or an aircraft cockpit, convolutional; for example micro-
phone noise, reverberative, impulsive,etc. In this paper, we make
the assumption that speech is degraded by additive white Gaussian
noise which is uncorrelated to the clean speech signal. We focus
on improving the overall quality of the noisy speech by treating the
speech enhancement problem as a signal estimation one in the time
domain. The conventional all-pole speech production model is as-
sumed to govern the behaviour of the clean speech signal [16]. The
signal estimation problem is then formulated in a Bayesian frame-
work where the variance of the additive noisc and the gain of the
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all-pole model are related to hyperparameters within the Bayesian
framework [13, 15, 14]. The optimisation of these hyperparame-
ters within an iterative framework leads to an estimate of the clean
speech signal and the coefficients of the all-pole, or equivalently
Linear Prediction (LP), model.

The iterative nature of the Bayesian scheme that we propose
in this paper is similar to that proposed by Lim & Oppenheim
[10] (see also [8]). Lim & Oppenheim’s system assumes an un-
derlying all-pole model for the speech signal and, starting from
the noisy speech signal, obtains alternate estimates for the all-pole
model coefficients and the clean speech signal in an iterative man-
ner. The main difference between the Bayesian scheme developed
here and Lim & Oppenheim’s framework is that whercas Lim &
Oppenheim’s framework requires the detection of non-speech ac-
tivity segments in the noisy speech in order to estimate the energy
of the corrupting noise and subsequently the all-pole model gain,
our proposed method does not. The detection of non-speech activ-
ity segments in noisy speech is also a feature of speech enhance-
ment algorithms which are based on Hidden Markov Modeclling
{4], spectral subtraction {1, 21, and signal subspace decomposition
[6,91.

This paper proceeds by first defining the speech enhancement
problem. A brief overview of the Lim & Oppenheim approach
then follows. The proposed speech enhancement scheme is then
theoretically developed. Results of the application of the Bayesian
scheme are then given and contrasted to Lim and Oppenheim’s
approach for stationary noise environments.

2. PROBLEM STATEMENT

Our aim is to recover the specch signal, s, from an observed signal,
y, which can be described as :

y=s5+vV (1)

where v is a zero-mean independent identically distributed (i.i.d)
white Gaussian noise signal with variance ¢2. The signals v and s
are assumed to be uncorrelated.

It is assumed that the clean speech signal, s, is described by an
LP model of order k such that :

s(n)=s" (n—1,n—k)a+ Gu(n) (2)
where
sn—1Ln—-k)=[s(n-1)s(n—-2)...s(n—k)] 3

and
a=[a(1)a(2)...a(k)] C))



u (n) is a zero-mean unity variance i.i.d. Gaussian process and G
is the gain term of the corresponding all-pole modelling filter.

3. LIM & OPPENHEIM’S APPROACH

The practical application of the scheme relies on a sub-optimal
optimisation procedure. The procedure can be viewed as a two-
stage iterative process which, at the " stage, derives an estimate
for the clean speech, 8, which relies on the estimate of the all-pole
model parameters, a'. The estimated speech is then used to obtain
an estimate of the all-pole parameters a't!. The procedure then

continues until some convergence criterion is met.
In order o obtain an estimate of the clean speech, s, its poste-
rior probability given the observations, y and the LP coefficients,
a is expressed as :
2 2
p (y|a\ S, G, all) P (s|a, G, Uu)
p(yla,G,o?)

p(sla,y.G,ol) = )

Since the denominator of equation (5) does not depend on s, and
a is considered to be fixed within the process of estimating s, we
require the maximisation of the product of the two terms appearing
in the numerator of (5) with respect to s. The posterior probability
of s can thus be written as :

p(sla,y,G,0%) xp(yla,s.G.07) p(sla,G,07)  (6)

The conditional probability of the noisy observations y is writ-

ten as :
¥ 1
) exp — (U—ley> @)

where [V is the length of the speech segment that is being analysed
and By = £ (y —s)" (y —s). The likelihood p (s|a, G, 02), on
the other hand. is :

p(s1a.6) = (5257 )

where E is the total squared prediction error:

p (yla,s,G’,ag) = (

2ro?

N
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exp [— ;FES] (8)
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Es = % > (s(n) - Zals(n—i)) ©)
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and ng,n,, are the limits over which the prediction error is com-
puted.

From equations (6), (7), and (8), we note that the posterior
probability of s can be written as:

9 1 1
p(sla,y,G,U,,.) x exp—(o_—gE-'y+a-5E,) (10)

x  exp(—M,) (11)

Setting the derivative of M, with respect to s to zero, we obtain a
maximum a posteriori estimate of the clean speech :

1 1 \"Hod
=(=5I+ B — 12
we=(Gre®) () W

where I is the identity matrix and B is a matrix of correlations of
the LP coefficients [17]. Lim & Oppenheim construct a Wiener

filter from the estimated all-pole model in order to approximate
the action of the estimator suap appearing in equation (12) (see
[10]). The Weiner filter requires estimates of the noisc variance
o2 and the all-pole model gain, G. o2 is estimated from non-
speech activity segments of noisy speech while G is obtained by
utilising Parseval’s theorem. In the LP coefficient estimation stage,
an autocorrelation estimator is used on the estimated speech.

4. THE BAYESIAN FRAMEWORK

We make the two following definitions in terms of the variance of
the corrupting noise, o>, and the gain of the all-pole model, G:

1
C_a_g (13)
1

n= rel (14)

where ¢ and 7 are termed hyperparameters [12, 14].

The posterior probability of the clean speech, s, given the
noisy observations, y, is expressed as :

p(sly) = /p(SIa-.C,n.-y)p(a-.CJJ!Y) dad¢dn (15

The evidence approximation [7, 13] is utilised in order (o evaluate
the integrand given in cquation (15). Specifically, it is assumed that
the posterior probability of [a, ¢, 7] exhibits a strong peak around
the most probable values of these parameters, [a. (. 7], . com-
pared to the variation of p (sla.{.n,y) in that region. As such,
the integral representing the posterior probability, p (s|y). is ap-
proximated as :

p(sly) = p (sl [a,¢, ], ¥) (16)

Now, the posterior probability of a, (. 7 can be written as :

p(a,Cnly) = Z¥2 C;)?z)yz))(a,c,n) a7

The prior p(a,{,n) is assumed to be uniform. p(y|a,{,n) can
thus be used to infer the optimal, or most probable, values of
(a, ¢, n). The term p (y|a, {,n) is the normalising term appearing
in the following expression and is called the evidence:

plyls,Q)p(sla,m)
b (sla, ¢, y) = —e e (18)
plsl p(yla.¢.n)
The numerator terms in equation (18), which appeared when dis-
cussing the Lim & Oppenheim system in a different form as equa-
tions (7) and (8) are re-written as follows :

1
P(yls,¢) = -exp(=CEy) (19)
Yy
1
p(sla;n) = - exp(-nEs) (20)
N I
where Z, = (%) and Z, = (%) * The evidence can now be

written as :

1
p(yla,¢,n) = A /CXP— (CEy +nEs)ds (21



Defining M (s) = (Ey + nEs, the integral in equation (21) can
be evaluated after performing a second order Taylor expansion of

M (s) around s, the most probable value of s:

M(s)= M (sm) + 1 (5 = Smp)” C {5 — Sump] (22)

2
where C is the Hessian matrix given by :

C = VVM(s) (23)
= (I+nB (24)

and B is given by B = V'V E,, which is analogous to the matrix of
correlations of the LP coefficients which was encountered earlier
in equation (12} of the previous section [17}.

Setting VM (s) to zero, the most probable estimate of s for
any ¢, 17, B, is obtained in a similar fashion to equation (12) :

Sm = ((1+7B)™'Cy (25)

Substituting equation (22) into (21), we use the standard Gaussian
integral to obtain an analytical expression for the evidence :

exp —M (Smp)

N 1
= 2 -3
p(yla,¢,n) 7.7, (27)Z det”™2C  (26)

We can now write the log evidence from equation (26) as :

wp o Y
logp(yla.¢,n) = —CE ~nE" - —2—log 2w

N
—% log det C + -5 log ¢
N
+ 0} log 1 27

where Ey® and nE" denote the values of the respective functions
evaluated at s.,, as expressed in cquation (25).

4.1. Derivatives of the Evidence

The properties of the log evidence can now be exploited in order to
obtain the estimate of the speech signal s,,, at the most probable a,
¢, and 5. This is done by setting the derivatives of the log evidence
with respect to ¢, 73, and a to zero such as to examine the condi-
tions that are satisfied at the maximum of the log evidence surface.
The conditions satisfied at the maximum of the log evidence are
governed by the following relationships (Saleh, 1996):

2EyY = 4§ (28)
ME® = N-§ (29)
N o TonB
mp e o
OB _ 1N I T (30)
da 2 — A+ ¢

where A; are the eigenvalues of 7B, and 6 is the number of “well-
determined” speech samples:

N
A
§= };__—/\iﬂ (31

f is analogous to the number of well-determined model parameters
«, which occurred in (MacKay, 1992) within the context of param-
eter estimation for interpolation models to indicate the number of
model parameters well determined by the data.

5. IMPLEMENTATION CONSIDERATIONS

We implemented the Lim & Oppenheim iterative framework in
the time domain through the evaluation of equation (12) on the
speech estimation slage, rather thanutilising a Weiner filter. Since
the original Lim & Oppenheim system was defined for an autocor-
relation estimator, the analysis of a speech frame was carried after
multiplying it by a Hamming window. The resulting enhanced
speech is therefore a reconstruction of the windowed speech.An
overlap-and-add method was thus maintained, whereby successive

analysis frames were advanced by half the window size, &, and
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the overlapped segments added.

The Bayesian scheme was implemented iteratively in the same
manner as the Lim & Oppenheim system whereby the estimation
of the ciean speech and the LP coefficients is carried out alternaicly
on two scparate stages. The optimisation of the log evidence term
in equation (27) is performed by iteratively solving equations (28),
(29) and (31) in order to obtain optimal values for ¢ and 5 which
arc substituted into equation (25) to obtain a clean speech esli-
mate. The estimation of the LP coefficients is then carried out
from the speech estimate just obtained using the conventional co-
variance estimator. The LP coefficients are utilised again within
equations (28), (29) and (31) to obtain a clean speech estimate, and
so on. This procedure leads to an estimate of the joint likelihood of
the speech and the LP coefficients given the observed noisy data,
p(a,sly). In order to circumvent any effects of discontinuities
between the frames, an overlap of 2k samples between successive
analysis frames was maintained.

6. RESULTS AND DISCUSSION

The Bayesian scheme, and Lim & Oppenheim framework, were
applied to the following utterance, sampled at 10 KHz, and spoken
by male and female speakers :

“Your sum shouldn’t come t0 seven three seven point

zero seven six.”
A frame size of duration 25.6 ms was maintained in the analy-
sis, which was performed using LP models of order 14. For both
speakers, the utterance was corrupted with additive white Gaus-
sian noise resulting in input signal-to-noise (SNR) ratios of 5, 10,
15, and 20 dB. The input SNR is defined as :

> 52 (n)
Z" d2 (71)
where s(n) and d(n) refer to the clean speech and the noise respec-
tively.

SNR;, = 101log;, (32)

Perceptually, the noise removal effect of enhancement was
clear after either 3 or 4 iterations for both methods. although a
continuous "musical” tone was noted to be present in the enhanced
speech. The “musical” tone is a feature of the majority of current
model-based speech enhancement algorithms and is attributed to
narrowband residual signals with time-varying frequencies which
result from the approximation of the LP spectra of the clean speech.
For iterations higher than 4, informal listening tests showed that
there was no audible improvement in the quality of enhanced speech.

Output SNR measures were obtained after 3 and 4 iterations,
and the results of both methods were compared under the same
input SNR conditions. The output SNR,, is defined as :

Zf:l 32 ('I’L)

SNRo = 1010810 == S 3 ()P

(33)




Bayesian iterative Male SNR,, (dB) | Female SNR,, (dB)
scheme Tteration Iteration
Input SNR 3 4 3 4
5 11.08 10.63 11.52 11.18
10 14.91 14.73 14.93 14.79
15 18.79 18.59 18.80 18.60
20 2260 | 22.14 22.32 21.83
Lim & Oppenheim | Male SNR, (dB) | Female SNR, (dB)
system Iteration Iteration
Input SNR 3 4 3 4
5 9.67 9.16 9.97 9.55
10 12.94 12.39 13.86 13.43
15 16.52 16.02 17.00 16.61
20 19.29 18.93 19.10 18.79

Table 1: Output SNR measures of enhanced speech obtained with
the Bayesian iterative scheme, and the Lim & Oppenheim system
in stationary noise environments.

Table I summarises the results for the Bayesian scheme and Lim &
Oppenheim’s system. In all cases, the output SNR is consistently
higher at 3 iterations, than at 4. The decrease in output SNR values
from 3 to 4 iterations is generally low and varies from 0.14 dB to
0.55 dB. It is also clear from Table I that the Bayesian iterative
scheme achieves output SNR values which are higher than those
obtained with the Lim & Oppenheim system for all the input SNR
values considered.

The SNR improvement (between the input and output SNRs)
generally becomes smaller as the input SNR gets larger for both
systems. For the input SNR value of 20 dB, negative improve-
ment of 0.7-0.9 dB in output SNR is obtained with the Lim &
Oppenheim system. This is in contrast to “positive” improvement
of around at least 2 dB for the Bayesian scheme. Informal listen-
ing tests by a number of subjects confirmed a preference towards
the Bayesian scheme over the Lim & Oppenheim system in all the
cases which are considered in Table L.

7. CONCLUSIONS

A Bayesian approach for speech enhancement whereby the cor-
rupting additive noise can be optimised, as a hyperparameter, from
the noisy speech was introduced. The Bayesian scheme was con-
trasted to the Lim & Oppenheim system. Both systems rely on the
estimation of an underlying all-pole model and follow the same
iterative scheme of alternately estimating the all-pole model pa-
rameters and the clean speech. Informal listening tests indicated a
consistent preference towards the Bayesian scheme in comparison
to Lim & Oppenheim’s system when enhancement was performed
on speech corrupted with additive white noise. The improvements
in SNR were also consistently greater for the Bayesian scheme
than Lim & Oppenheim’s system.

The results given in this paper demonstrate the huge poten-
tial of Bayesian methods in speech enhancement. The ability to
infer the corrupting noise variance from the noisy speech signal,
based on the underlying all-polec model, is a useful step towards
the development of a unified comprehensive Bayesian view of the
all-pole modelling of noisy speech.
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