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ABSTRACT 

In this contribution we address the problem of the blind 
joint identification and order estimation of a non-minimum 
phase FIR communication channel by exploiting the cyclo- 
stationarity of the received signal sampled at rate greater 
of the symbol rate. We show that the identification can 
be formulated as a “subspace fitting” problem; this allows 
for using the subspace distance as a test statistic to detect 
the correct channel length (among different hyphoteses). 
Moreover, mimicking estimation procedures proposed in 
the framework of DOA estimation, an asymptotically effr- 
cient procedure is proposed which obtains the channel esti- 
mate in two steps: the channel estimate obtained in the first 
step determines optimal weights which are then employed 
in the second step to refine the channel estimate. The accu- 
racy of the identification is comparable with other methods 
described in the literarature (e.g. the subspace method [4]) 
while the test for order detection performs quite well also 
in presence of channel disparity outperforming commonly 
used tests based on the eigenvahtes of the covariance ma- 
trix. 

1. INTRODUCTION 

Blind identification of single input/multi output (SIMO) 
FIR channels has received great attention in the very re- 
cent literature and estimation techniques based on geomet- 
ric properties of suitable matrices of second-order statistics 
has been proposed and their accuracy analyzed [4, 10,7,5]. 

Moreover, fractionally sampling of communications sig- 
nals reveals the ciclostationarity induced by the trasmitted 
symbols which can be exploited using multichannel rep- 
resentations so allowing for classical stationary analysis. 
The ciclostationarity of fractionally sampled communica- 
tions signals is fully exploited in [ 1, 2, 31 to obtain solu- 
tions to both the identification and the equalization of the 
channel. 

Despite the identifiability issue, i.e. common factors 
among subchannels cannot be identified from second order 

statistics, all the methods strongly rely on the knowledge 
of the FIR channel length since model mismatching dra- 
matically affects the accuracy of the estimation Usually, 
the order of the channel is estimated by means of statistical 
tests based on the hyphotesis of equal “noise” eigenvalues 
of suitable second order statistics matrices which are not 
particular robust for channel with lack of disparity (loosely 
speaking, channels close to non identifiability conditions). 

Here, by further exploiting the property of matrices of 
cyclic statistics already presented in [3], we propose a “sub- 
space fitting” (SF) approach to the blind identification of 
FIR channels which embeds the detection of the channel or- 
der as the measure of the distance between suitably defined 
subspaces of such matrices. 

Moreover, estimation procedures based on SF already 
used for DOA estimation in army processing can be use- 
fully applied to the case of interest and, in particular, asymp- 
totically optimal techniques such as “Mode” technique [S] 
are here considered as well as other, non optimal but com- 
putationally less intensive, techniques such as the so-called 
“Reduced Order” technique [6]. 

Accuracy analysis is conducted by computer simula- 
tions to asses to applicability of the proposed techniques 
and results concerning the power of the order detection test 
are also reported. 

2. BLIND IDENTIFICATION USING CYCLIC 
STATISTICS 

We refer to the following observed discrete-time cyclosta- 
tionaq process 

in =.&,ch[n-mP]+v, 
m 

(1) 

where the possibly coloumd additive noise TJ, is indepen- 
dent of the i.i.d. “symbols” wn. 

The time-varying (biargumental) correlation is periodic 



with period P (w.r.t. the index 72): having denoted the noise correlation R,[k] = 0: . p,, jk]. 

In (2) 0; is the power of the symbols, R, [ICI is the autocor- 
relation of the stationary noise c,, and the overbar denotes 
complex conjugation 

The cyclic correlations are the DFS coefficients of the 
periodic (for k fLued) sequence R,[n, kj: 

We see that, apart a complex constant. the channel co- 
efficient K are given by the generalized eigenvector of the 
pencil (M,,M,) corresponding to the generalized eigen- 
value 0,“. When the channel order is not matched, there 
are multiple generalized eigenvalues equal to 0,” and we 
can only individuatc a subspace where the vector of the 
channel coefficients lies. This happen also when the order 
is known and there are non-identifiable components in the 
channel. For the sake of symplicity, in the following WC 
consider only identifiable channels to exploit the properties 
of the kernel of the pencil (M,; M,); these can be readily 
extended to channels with non identifiable components as 
it will appear in the following. 

cY=o;.. ,P-1 

(3) 

Let us focus on the case P = 2, typical in digital com- 
munication scheme with fractional sampling; moreover, let 
us consider FIR channels of length Lh. We have, for 

lkl I Ltt - 1, 

Ro,[kj = $ “2’ h[k + I] z[l] $ R,, [k] 
l=O 

Lh-I 

R,:[k] = $ c h;k + l;(A)’ . ?$] 
l=O 

and the relative cyclic spectra (Fourier transforms) are 

P~(e+‘)d~f~{R~[k]}=$‘H(e3”)FiofP,(dW) (4) 

P;(e+‘)defF{R;[k]} = $‘H(e+) .~(e+‘+j”) (5) 

The previous developements are well known in the liter- 
ature and are reported for the sake of comprehension and 
for notational purposes only. 

As shown in [3] using these statistics we can write the 
following identification system: 

M,%=c$M,% (6) 

where the channel coefficients are collected in the vector 
T;= pro:, . ‘. ,X[Lh - l]]’ and the matrices M, and M, 
collects second order cyclic statistics as follows 

IIh’f;Ilkl = R;[k i 11(-l)’ ; IIh’i& = R;[k 111 

M,=M;-M; 

IIMvIlkl = pvik + li(-l)l 

Let us consider the white noise case, to which the prob- 
lem can be reconducted through whitening by a known 
square root of M,. ln this case, the solution of (6) is 
given by the less significative eigenvector of the matrix 
M, when the channel order is matched, i.e. the kernel of 
M, - ~7,” . I has dimension equal to one. 

Let is prove now the following 

Theorem 1 
Let N >_ Lh be the number of columns of the matrix My. 
Then, the kernel of the matrix M, -u,” I has dimension 
int [(N-L,,,+ 2)/2] and it admits a basis having the fol- 
lowing structure: 

rho hl hz ..’ hLhel 0 ... 0 1 H 
0 0 ho ... hLhq hLhe2 ,.. 0 

V(h)dzf... . . 
. . . . . . . . . . . . : 

1 0 0 o..- 0 0 . . . kc+, -11 

(7) 

Proof First we determine the kernel dimension. The 
linear system (6) is the time domain expression of the ho- 
mogeneous polynomial equation 

(P,“(z) - P&)) H(-z) =e; (Z)H(Z) 

in the unknown polynomial H(z). 
All the solutions must be in the form H ( z)H’( z) where 

H’(%) = nk(l --ak% -‘)(l+uk%-l) has zeroes utiody 
spaced on circles (due to the presence of both H(z) and 
H(-z)) andH( ) ’ th z is e minimum degree polynomial with- 
out zeroes uniformly spaced on circles, i.e. the identifiable 
part of the channel since all other factors are embedded in 

H’(z) 
Then, if X= L,, the solution is unique and the dimen- 

sion of the kernel is 1. For IV > Lh , due to the nature of the 
polynomial H’(z) which has an even number of roots, the 
dimension of the kernel increases as 1 + int i(N - Lh)/2] 



As far as the structure of the kernel is concerned, the 
columns of V are linearly indipendent and all am solution 
of the form H(z)z-~~ so constituting a basis of the kernel. 
cl 

The theorem 1 can be employed to phrase the joint 
order and channel estimation as a minimization of a suitably 
defined subspace distance criterion In fact, given a generic 
basis, say U, of the kernel of the matrix MY-a: . I (e.g. 
obtained through ordinary SVD) the correct channel order 
and coefficients zeroes the following functional 

J(h, Lh) = IV(h) - U. Tll; (8) 
where T is a non singular transformation behveen the bases 
U and V(h) and ]I IIF denotes Frobenius norm 

The functional (8) depends on both h and T which 
are unknowns. A similar functional is miminized in the 
so-called “Reduced Order” DOA estimation technique [6]. 
This technique basically exploits the fact that transforma- 
tion T can be determined exploiting the special sparse 
structure of V(h) which allows to build a homogeneous 
linear systems in the unknowns elements of T using only 
those equations 

U . T = V(h) 

which corresponds to zems in the right hand side. Solv- 
ing for T the resulting overdetermined’homogeneous lin- 
ear system allows for the determination of the matrix V = 
U . T which wilI admit the structure (7) iff the channel 
order is exact, i.e. the functional J(h, Lh) is zero. 

Another procedure is obtained mimicking the so-called 
“MODE” technique described in [S] for DOA estimation. 
It stem out from the fact that the minimization of (8) can be 

separately done for T and Vdgf V(h). Eliminating T and 
using the eigendecomposition of the matrix M, = 9AW’, 
(8) is rewritten as follows 

J(h, Lh) = tr 
[ 
V. (V”V)-’ . V”Q 1 (9) 

where QdgfqAe”, and A=A-l(A - azI)2. 
Note that the functional (9) is highly nonlinear in the 

unknowns h and it should be minimized using numerical 
techniques. Order detection is carried out by minimizing 
over different hyphoteses. 

The MODE technique [S] obtain a solution in two 
steps: in the first step the functional (9) is minimized drop- 
ping out the term (V”V) -l, i.e.minimizing the following 
quadratic functional for the channel coefficients h: 

J1 (hi, Lh) = tr [VV” . Q] 

under some suitable constraint such as II hll= 1. 

‘In fact, said x2 = (1 + int [(N - L,)/2])2 the number of unknows, 

the available equations are 2x(x - 1). This does not occur in the DOA 
case where the linear system is square. 
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Figure 1: RMSE of various estimators vs. SNR for channel 
without lack of disparity. 
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Figure 2: Percentage of succesfull order detection vs. SNR 
for channel without lack of disparity. 

Then, substituting the obtained consistent estimate of 

(VT-’ = (VH(hl)V(hl))-’ in (9), another quadratic 

functional is obtained 

J(h, Lh) = tr 
1 
V. (VH(h,)V(h,))-’ .V~CJ] (10) 

The minimization of (10) yields an estimate of h whose 
accuracy is asymptotically the same of the estimation drawn 
from (9), as proved in [S]. 

3. SIMULATION RESULTS AND CONCLUSION 

We have performed computer simulations to assess the 
accuracy of the proposed estimation procedures and for 



comparison purposes with existing techniques. In partic- 
ular, we have considered the subspace (SS) technique de- 
scribed in [4] as a reference. In fig. 1 the RMSE defined as 

RivlSE= (/m) (considering normal- 

ized unit norm v&ton) is plotted vs. SNR for the channel 
h= [1.165,0.6268, -1.0751,0.3516, -0.6965,2.6961]= al- 
ready tested in literature which does not shows lack of 
disparity and binary i.id. symbols. We have denoted by 
SS, Pl and P2 the results relative to the SS technique, 
the proposed “Reduced Order” technique and the proposed 
“MODE” technique, having drawn sample estimates of 
statistics from 1000 fractionally sampled observations. In 
fig.2 the percentage of succesfull order detection is reported 
for the same channel compared to application of MDL cri- 
terion to the estimation of channel order. 

To test robustness under lack of disparity the channel 
h= [l, 1, -1.902113, -1.61803,1, I]’ has beenconsidered 
in figs. 3 and 4. Note the improved performance is ob- 
served in the order detection, while channel estimation ac- 
curacy is comparable if not better than accuracy obtained 
by SS technique. 
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Figure 3 : RMSE of various estimators vs. SNR for channel 
with lack of disparity. 
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Figure 4: Percentage of succesfull order detection vs. SNR 
for channel with lack of disparity. 
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