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ABSTRACT 

We present a piecewise linear recurrent neural network (PL- 
RNN) structure by combining the canonical piecewise linear 
function with the autoregressive moving average (ARVA) 
model such t.hat an augmented input space is partitioned 
into regions where an ARMh model is used in each. The 
piecewise linear structure allows for easy implementation. 
and in training, allows for use of standard linear adaptive 
filtering techniques based on gradient optimization and de- 
scription of convergence regions for the st.ep-size. We study 
the dynamics of PL-RNN and show that. it defines a contrac- 
t.ive mapping and is bounded input bounded output stable. 
We introduce application of PL-RNN to channel equaliza- 
tion and show that it closely approximates the performance 
of the traditional RN?; that uses sigmoidal activation func- 
tions. 

1. INTRODUCTION 

Recently, neural networks have been applied t,o a wide range 
of signal processing applications because of the growing 
need for alternatives to the linear structure that is typically 
assumed. Nonlinear signal processing with neural networks 
has provided significant performance improvement in a va- 
riety of applications (for a recent collection of these appli- 
cations see e.g. [9])! when the underlying process involves 
nonlinearities and/or the signal to noisc: ratio is poor. 

The attractiveness of piecewise linear (PL) models on 
the other hand, stems from the fact that. while they allow 
use of a variety of analysis and development tools that are 
linear. they are also good approximators of functions that 
arc highly nonlinear. They have been effectively used in 
control engineering, nonlinear circuit analysis [J]. and in 
channel equalization [z]. While, the PL models are very 
easy t.o imptcment, they usually require large set of param- 
eters to describe the linear relationship in each partitioned 
region of a domain space. A special class of piecewise linear 
structures, canonical pieccwise linear (CPL) models, en- 
ploy a global linear model in the partitioned domain space 
rather than using individual linear models in each. Hence 
they greatly reduce the parameter storage requirement of 
t,he piecewisc linear model. 

In this paper, we first define RCPL function by com- 
bining t.he CPT. function with the ARM.4 model [5]. RCPL 
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mapping is the process of finding partition boundaries of 
a sample space in an augmented domain space where an 
AR!vlA model is used for ~~pproximation in each partitioned 
region. We then present a framework for study of the dy- 
namics of RCPL function, and show that it is a contract,ive 
mapping and is bounded input bounded output stable IIII- 

der a given regularity condit,ion. We then propose a partic- 
ular PL-RSS struct,ure based on the RCPI. function, and 
show that? for a channel equalization example, the proposed 
structure yields robust performance which closely approxi- 
mates that of a traditional RNN using sigmoidal nonlinear- 
ity. 

2. RECURR.ENT CANONICAL PIECEWISE 
LINEAR FUNCTION 

We present the definition of the PI,-RNN based on canon- 
ical piecewise linear function. CPI, network is initially in- 
troduced for nonlinear circuit analysis [s]. CPL, structures 
provide a desirable compromise between the approximat,ion 
ability of nonlinear models and the efficiency and theoretical 
accessibility of the linear domain, and reduce the parame- 
ter storage requirement of piecewise linear models consid- 
erably by employing a global linear representation. In [?I! 
CPI, structure is used for adaptive equalization and it, is 
shown that. even with very simple CPL structures, impor- 
tant performance gains can be achieved with respect to a 
linear equalizer in equalization of linear channels. The Ct’l, 
function is defined as [s]: 
Definition 1 (Canonical Pieceu:i.se Linear Function): A 
piecewise linear function f: D + Q, with a compact subset 
11 c RAxv and compact subset Q c R *AA, is called a canonical 
piecewise linear ((YPL) function, if it can bc expressed by a 
global representation: 

I(x)=a+Bx+~c,I(a,,x)+,~,I 
*=, 

(1) 

where BE RMx.‘.a:c, E R”,a,.x E RAY and $‘, E R. 
Based on the above definition, in [l] we study the rep- 

rcsentation and approximation ability of CPL function and 
show that we can always construct a partition for which 
a CPL represent,ation exists. and that wc can appr0ximat.e 
any given continuous nonlinear mapping with a CPL func:- 
tion. IVe can easily use the CPL funct,ion to describe the 



input/out.put behavior of a system, e.g.. for the univariate 
case: 

where f: R” + R is a CPT, function. M = 1. x(n) = 
[z(n),x(n - l)?...r(n, - :V + l)lr: z(n) and y(n) are the 
system input and output sequences respectively. and z!(n) 
is the addit,ive noise component. The model in (2) is em- 
ployed as an adaptive filter in [4] based on the mean square 
error criterion. It is shown that this kind of filter can have 
bett,er adaptive performance, especially for modeling strong 
nonlinearitics, while providing savings in computation and 
implementation. 

In [5], we propose a general recurrent canonical piece- 
wise linear (RCPL) network as an extension of piecewise 
linear function by incorporating a nonlinear aut.o-regressive 
moving average (NARMA) model where the elements in the 
vector x(7&) are predicted by the KARMA model: 

z*(n) = h,(x(n-l),...,x(n-pl),f(x(n-l)),...:f(x(n-pz)) 

where i = 1,2,. . , N. In [8]! a threshold auto-regressive 
(TAR) model is introduced and it is successfully applied to 
time series analysis. Since the coefficients of the TAR model 
depend on the thresholds of TAR process, TAR model can 
be considered as a special case of CPL auto-regressive mov- 
ing average model. 

A modified definition of RCPL function that is more 
useful for its application as a nonlinear filter can be obtained 
as follows: Let pl = pz = 1, x(n) is the state vector of the 
dynamic system and u(n) is the input vector of the system. 
The RCPL function is then defined as: 

Definition 3: A function f: D, x Dz -+ Q with sample 
space D1 c R”, Dz c R’. and compact subset Q C R” 
is said to be a RCPL function if it, can be expressed by the 
global representation: 

f(x(n),ll(n)) = a+ Box(n) + Blf(x(n - l),ll(n - 1)) 

+&u(n) (3) 

irk(n) = uk + (ho,. x(n - 1)) + (h,, f(x(n - 1). u(n - 1))) 

+(hz1.u(n))+Cck,l(ao,.x(n- I)) 

r=l 

+((Yl,,f(x(~--I).u(n--1)))+(O.L,,U(~))+~lI (4) 

where x: ho (~0, E RN 1 f.a. hl,, ~1, E R”, 11, hz,, 02, E 
R’. Bo E RbxAv, & E R”iX”‘z BZ E Ilh’x’, akTCk,.pk,,T E 

R. k = 1, 2,. ( iv and lk is t.he kth element. in x. 

Rv comparing definitions 1 and 3, we can see that RCPL 
filter “is a special case of the CPL filter. The RCPL filter 
partitions the input signal space into finite disjoint regions 
and in each region, it can be represented by a FIR filter 
with ir1finit.e length. Therefore. the result presented in [l] 
on t.he approximation ability of the CPL function also holds 
for the RCPL function. 

3. DYNAMICS OF RCPL 

To study the dynamics of the RCPL function described 
by (3) ad (4). we first rewrite the function in the following 
form: 

n(n) = a +&x(72 - 1) $&u(n) (5) 

where 

x(7i) = f(x(:;:l(n)) [ I’=[ i+$oa]ft=[ ;;,I 
HI 

BI + BoHl 1 [ I32 = Hz 
B2 + BoHz 1 

(21 = (ao, al,)=‘, 62, = (YZ,? 9, = 4, ii = (Ul, n2: “. (a.v)=. 

G’= (cI,:cz,~...,cN,)‘, H, = (h~,rh~l,...?h3,~)T, for i = 
1?2...,r?j=O.1,2. 

We can then use the definition given above. to show 
that the RCPL function is bounded for bounded inputs. 

Theorem 1: For the RCPL function defined by (3) and (4). 
assume that the input, vector u(n) is bounded and the pa- 
rameters satisfy the following condition: If there exist,s MI 

EO E (0,l) such that 

(6) 
,=I 

then, there is a real number d, such that for all K 2 d, the 
ball D(K) = {x: llxll 2 I-}. . . t 1 IS lnvdrlan under (3) and (4). 

Proof of the theorem is given in [6]. Xote that. the 
notation introduced here, in equation (5): is not the same 
as the one used in [6]. The proof of the theorem, however, 
follows the same procedure with this new definition. The 
definition given in (5) provides a convenient framework to 
study dynamics of RCPL function which we also use to 
prove t,he following: 

Theorem 2: The map that defines the RCPL function (3) 
and (4) is a contractive mapping if the condition given in 
(6) is satisfied. 
Proof: Let k(x) = $i + ~,X + B211(n) + C:=, C,I (&,,x) 

+((~2,.11(12)) +$,I then, 

k(xl)-k(x2)=B1(X1 -n2)+CE,(I(hl,.xl)+(n2~.u(n)) 

t=, 

+B,( - 1(61,,x2) +((i.2,,u(n)) +B,I) 

and by using (6): we get 

Ilk(x1) - qx2Nl I ( IIBlII + c IICIII Ilk,11 )llXl - x2II 
:=l 

I (1 - ~O)llXl -x211 

where EO E (0,l). 
Theorem 2 shows t.hat k(.) is a contractive mapping 

whenever (6) is satisfied. Thus. after receiving input vec:t.or 
u( 7~). which is assumed to bt: bounded, the function will 
always reach a unique equilibrium regardless of its initial 
stat.e x0. 



Figure 1: Recurrent Neural Setwork Structure 

4. A PIECEWISE LINEAR RNN STRUCTURE 

Based on the definition of the RCPL function given by (3) 
and (4). we define the piecewise linear RNN as follows. 

Let M = 1, N = Mr. r = .Vi, r = 2Mr, tr(n) z 

y(7~) = [y~(n):..,y.~,(n)]~. x(n) = [21(7~);..,2.~~(n)]~, 

G(n) = f(x(n),y(n)), where y(n) is the input vector and 
G(n,) is t.he output of t.he network and zk(n), k = 1,2. ...Mr 
is the output of hidden node k. 

For t.he parameters in (5), we choose a=O, Bn=(ql , q2 1 
. ..?qn.,).Br =OandBz=(pr.pz;~~.p~,)andfortheones 
in (6), ak = 0 (which is t,he kth element of a), hn, = 0: 
hrL=hkr hz, = 0, Ck,=1/8 and $,=4! i=l, ...( Mr and 
Ck,=-l/8 and /&z--4, i=JMi +l, ..., 2,411. CYO,~=(V~~. tlkz, 

. 9 VkM,)T, 01 =o. ‘32, =(Wkl&dk2, ..., WkN,)T, i=l:..., 

2M1 and k=l!.‘.‘.. Mr. +he structure is expressed by the 
following equations: 

o(n) = d6(njj, G(n) = 2 q,z,(n) + f), yi(nj (7) 
I=1 t=l 

lk(n) = y(kk(n)) (8) 

ik(n) = hr,6(n - 1) + 2 Z)kd-,(n - 1) + 2 “‘k,%tn) tg) 

1=1 ,=I 

for k=1.2,...!Mr. 
The network defined by (‘7)-.(Y) is shown in Figure 1. 

Note that the PL-RXN structure we have defined above 
involves the introduction of a nonlinearity at the output 
which restricts the output of the PC-RNT to the interval 
[-l:l]. It is observed that this modification to the general 
RCPL structure given in (3) and (4) has improved the 
performance and robustness of the network by pushing the 
network parameters into the region that will satisfy the con- 
dition given by (6) early on during training. 

The activation function for PI,-RN?; is chosen as: 

g(sj = Is + 41 - Is - 41 
8 

Figure 2: Activation Function g(.) for RNN and PL-RSN 

and as g(s) = tanh(s) for the traditional RKN by using the 
same structure, shown in Figure 1. These two activation 
functions are plotted in Figure 2. 

If we assume that d(n) is the desired response and se- 
lect the mean square error J(n) = E{r2(n)} = E{(d(n) - 
o(r~))~} as the cost function. we can obtain the learning 
algorithm by steepest, descent miuimization of J(n). The 
filter coefficient updates are given by: 

qk(n+l) = qk(n) + C(n)Tk(n) (10) 

h(n + 1) = p,(n) + c(n)yl(n) 

hk(n •+ 1) = h(n) $ c(n)qk(n)g’(?k(n))6(Tl - 1) 

ukk’(n + 1) = t’kk’(n) + C(n)qk(n)g’(?k(n))2kJ(7t - 1) 

2L’kj(12 + 1) = wk](n) +c(n)qk(n)g’(?k(n))y](n) (11) 

for k, &‘=l,...: Mr and j=l:..: :Vt! where c(n)=ike(n) 
/(G(n)), p is the step-size and g’(s) is the derivat.ive of 
the nonlinear function evaluated at s, given by 

{ 

0.25 
Y’(S) = 0 

if -4 < s < 4 
otherwise 

for PL-RNN and g’(s) = 1 - tanh2(s).V s? for the RNN. 

5. SIMULATION RESULTS 

The performance of the two RNN structures introduced in 
section 4 are compared for an equalization example. They 
are used in the equalization of the following channel: 

y(n) = Yl(nj - 0.9Yi?(4 + v(n) (12) 

where the multipath component is given by yl(n) = z(n) + 
0.5z(n-1). z(n) is the input signal, y(n) is the channel out- 
put and n(n) denotes the zero mean white Caussian noise. 
‘The input signal z(n) is assumed to be an independent se- 
quence taking values from {-1. 1) with equal probability. 
The dimension of the observation vector Nr is chosen as 
2 to be able to visualize the decision boundaries, and the 
number of nodes in the hidden layer Mr is chosen as 5. The 
weights are initialized to uniformly distribut.ed random val- 
ues between -0.1 and 0.1 and the algorithm given by Eqs. 
(lo)-(11) is used for training. Several learning parameters 
are tested at 15dB signal to noise ratio (SNR) (SSR is de- 
fined in terms of the input signal power to the noise vari- 
ance). The results that indicate similar performance for 
the PL-RNN and the RKX equalizers are shown in Figure 
3. For the results shown in Figures 4 and 5? the step-size p 
is chosen as 0.7 for PL-RNN and O.rj for the RKN. a value 
which yields the best average performance for each at, 15 
dU. To obtain the SNR curve shown in Figure 4, the two 
equalizers are trained with 10000 samples and then testccl 



Figure 3: Convergence curves with varying step-sizes for (a) 
PL-RNI\I; (b) R.NN 

Figure 4: SNR curves for RNN and PL-RNN 

for 20000 samples for 50 independent realizations. The two 
structures again yield very comparable performance. 

The decision regions described by each equalizer also 
proved to be similar. In Figures 5a and 5b. WC only show 
the decision regions formed by the PL-RNK equalizer. Since 
for a recurrent structure! the boundaries depend on the 
value of the previous network output, we assume that af- 
ter convergence, the network output will be mostly (-1, I} 
and consider these two cases. Figures 5a and 5b show the 
decision boundaires obtained by using PL-RNN at 15 dB 
for o(n - 1) = -1 and o(n - 1) = 1 respectively. They 
also show the optimal Bayesian decision boundary for these 
given network output, o(n, - l), values. Finally. the opti- 
mal Bavesian decision boundary for the given channel is 
plotted-in Figure 5c. As the channel has a memory of 
length l! the observation at time n depends only on the 
current and previous value of the input, i.e., on x(n) and 
z(n - 1). At time n. let z(n - 1) = -1: then, assuming 
noise is zero, the observat,ion ~(n - 1) can either be 1.5375 
(if r(n - 2) = -1) or -0.38i5 (if z(n - 2) = 1) for the 
given channel model. Hence at time 11, there are four pos- 

Figure 5: Decision boundary formed by PL-RCPL equalizer 
and the optimal Bayesian boundary when (a) o(n - I) = 
-1 and (b) o(n - 1) = 1; (c) Optimal Rayesian decision 
boundary for the given channel. (“0” denotes -1 and “*x 1) 

Figure 5: Decision boundary formed by PL-RCPL equalizer 
and the optimal Bayesian boundary when (a) o(n - I) = 
-1 and (b) o(n - 1) = 1; (c) Optimal Rayesian decision 
boundary for the given channel. (“0” denotes -1 and “*x 1) 

sible observation pairs (y(n). ~(n - 1)): (0.3875. 1.5375), 
(0.3875, -0.3875), (1.5375,1.5375) and (1.5375. -0.3875), 
instead of 8. Note t.hat the first two pairs corresponds t,o 
z(n)=1 and the last two pairs corresponds to x(n)=-1. 
This results in a BayTsian based decision boundary plot- 
ted shown as the straight line in Figure 5a. Note that the 
boundaries obtained using PL-RKX are very close to t.he 
optimal ones. Similar discussion holds for Figure Sb. 
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