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ABSTRACT

We present a piecewise linear recurrent neural network (PL-
RNN) structure by combining the canonical piecewise linear
function with the autoregressive moving average (ARMA)
model such that an augmented input space is partitioned
into regions where an ARMA model is used in each. The
piecewise linear structure allows for easy implementation,
and in training, allows for use of standard linear adaptive
filtering techniques based on gradient optimization and de-
scription of convergence regions for the step-size. We study
the dynamics of PL-RNN and show that it defines a contrac-
tive mapping and is bounded input bounded output stable.
We introduce application of PL-RNN to channel equaliza-
tion and show that it closely approximates the performance
of the traditional RNN that uses sigmoidal activation func-
tions.

1. INTRODUCTION

Recently, neural networks have been applied to a wide range
of signal processing applications because of the growing
need for alternatives to the linear structure that is typically
assumed. Nonlinear signal processing with neural networks
has provided significant performance improvement in a va-
riety of applications (for a recent collection of these appli-
cations see e.g. [9]), when the underlying process involves
nonlinearities and/or the signal to noise ratio is poor.

The attractiveness of piecewise linear (PL) models on
the other hand, stems from the fact that while they allow
use of a variety of analysis and development tools that are
linear. they are also good approximators of functions that
are highly nonlinear. They have been effectively used in
control engineering, nonlinear circuit analysis [4], and in
channel cqualization [2]. While, the PL models are very
easy to implement, they usually require large set of param-
eters to describe the linear relationship in each partitioned
region of a domain space. A special class of piecewise linear
structures, canonical pieccwise linear (CPL) models, em-
ploy a global linear model in the partitioned domain space
rather than using individual linear models in each. Hence
they greatly reduce the parameter storage requirement of
the piecewise linear model.

In this paper, we first define RCPL function by com-
bining the CPL function with the ARMA model [5]. RCPL
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mapping is the process of finding partition boundaries of
a sample space in an augmented domain space where an
ARMA model is used for approximation in each partitioned
region. We then present a framework for study of the dy-
namics of RCPL function, and show that it is a contractive
mapping and is bounded input bounded output stable un-
der a given regularity condition. We then propose a partic-
ular PL-RNN structure based on the RCPIL function, and
show that, for a channel equalization example, the proposed
structure yields robust performance which closely approxi-
mates that of a traditional RNN using sigmoidal nonlinear-

ity.

2. RECURRENT CANONICAL PIECEWISE
LINEAR FUNCTION

We present the definition of the PI-RNN based on canon-
ical piecewise linear function. CPIL network is initially in-
troduced for nonlinear circuit analysis [3]. CPL structures
provide a desirable compromise between the approximation
ability of nonlinear models and the efficiency and theoretical
accessibility of the linear domain, and reduce the parame-
ter storage requirement of piecewise linear models consid-
erably by employing a global linear representation. In [T7],
CPL structure is used for adaptive equalization and it is
shown that, even with very simple CPL structures, impor-
tant performance gains can be achieved with respect to a
linear equalizer in equalization of linear channels. The CPL
function is defined as [3]:

Definition 1 (Canonical Piecewise Linear Function): A
piecewise linear function f: D — @, with a compact subset
D C RY and compact subset Q C RM, is called a canonical
piecewise linear (CPL) function, if it can be expressed by a
global representation:

f(x)=a+Bx+Zc,|(a,,x)+[J‘,| (1)

=1

where B € RM*Y a ¢, € RM ai,x € R" and 3, € R.
Based on the above definition, in [1] we study the rep-
resentation and approximation ability of CPL function and
show that we can always construct a partition for which
a CPL representation exists. and that we can approximate
any given continuous nonlinear mapping with a CPL func-
tion. We can casily use the CPL function to describe the



input/output behavior of a system, e.g.. for the univariate
case:

y(n) = f(x(n)) + v(n) (2)

where f: RY — R is a CPI function, M = 1, x(n) =
[z(r),z(n ~1),---2(n — N +1)]7, z(n) and y(n) are the
system input and output sequences respectively, and v(n)
is the additive noise component. The model in (2) is em-
ployed as an adaptive filter in [4] based on the mean square
error criterion. It is shown that this kind of filter can have
better adaptive performance, especially for modeling strong
nonlinearities, while providing savings in computation and
implementation.

In [5], we propose a general recurrent canonical piece-
wise linear (RCPL) network as an extension of piecewise
linear function by incorporating a nonlinear auto-regressive
moving average (NARMA) model where the elements in the
vector X(n) are predicted by the NARMA model:

Ii(n) = h'(x(n_‘l)! ot ~,x(n—p1),f(x(n—l)), T ,f(x(n—pz))

where 1 = 1,2,---,N. In [8], a threshold auto-regressive
(TAR) model is introduced and it is successfully applied to
time series analysis. Since the coeflicients of the TAR model
depend on the thresholds of TAR process, TAR model can
be considered as a special case of CPL auto-regressive mov-
ing average model.

A modified definition of RCPL function that is more
useful for its application as a nonlinear filter can be obtained
as follows: Let py = p» = 1, x(n) is the state vector of the
dynamic system and u(n) is the input vector of the system.
The RCPL function is then defined as:

Definition 3: A function f: Dy x Dy — Q with sample
space D1 C RY, D, C R", and compact subset @ C RM
is said to be a RCPL function if it can be expressed by the
global representation:

f(x(n),n{n)) = a+Box(n)+ B;f(x(n—1),u(n-1))
+B2u(n) (3)

rx(n) = ax + (ho, . x(n — 1)) + (hy,, f(x(n — 1), u(n - 1)))

+(hz,, u(n)) + Y e, (o, x(n — 1))

=1

+{a,, f(x(r— 1), u(rn =~ 1)) + (az,, u(n)) + 8| (4)

where x,hg, , 0, € RV, f,a, hy,, o, € RM, u,hy, a0, €
R™. B, € Rﬁ/]xN‘ B_1 c RMXM, B, € RMxr‘ ak‘Ck,-‘/Bk,,T c
R, k=1,2.--,N and zi is the kth element in x.

By comparing definitions 1 and 3, we can see that RCPL
filter is a special case of the CPL filter. The RCPL filter
partitions the input signal space into finite disjoint regions
and in each region, it can be represented by a FIR filter
with infinite length. Therefore, the result presented in [1]
on the approximation ability of the CPL function also holds
for the RCPL function.

3. DYNAMICS OF RCPL

To study the dynamics of the RCPL function described
by (3) and (4). we first rewrite the function in the following
form:

%x(n) = a+B;x(n-1)+Byu(n) (5)
+ Zc.|(u].-,x(n—1))+(512,,u(n))+-3,|
i=1
where
%(n) = x(n) - a . i
PZ sx(n)un)) [2T ] a+Boa | €T | Boc
B, = Ho H, B, = H,

'~ | BoHo B; +BoH, 27 | B2+ BoH,
a1, = (ao, a1,)7, G2, = a2, B = Bi A= (a1,a2,---,an)".
C.‘=(01,,C2,-,"~,CN‘) aH]=(hJ“hJU"',hJN)T_,fOI‘i:
1,2---,7,3=0,1,2.

We can then use the definition given above. to show
that the RCPL function is bounded for bounded inputs.

Theorem 1: For the RCPL function defined by (3) and (4),
assume that the input vector u(n) is bounded and the pa-
rameters satis{ly the following condition: If there exists an
€0 € (0,1) such that

-
Bl + > flall llan, ]| <1 -0 (6)
i=1

then, there is a real number d, such that for all K" > d, the
ball D(K) = {x :||x|| £ K} is invariant under (3) and (4).
Proof of the theorem is given in [6]. Note that, the
notation introduced here, in equation (5), is not the same
as the one used in [6]. The proof of the theorem, however,
follows the same procedure with this new definition. The
definition given in (5) provides a convenient framework to
study dynamics of RCPL function which we also use to

prove the following:

Theorem 2: The map that defines the RCPL function (3)
and (4) is a contractive mapping if the condition given in
(6) is satisfied.

Proof: Let k(x) = a + Bix + Bou(n) + Y _/_, & (a1, ,x)
+{@&z,,u(n)) + 3| then,

k(x1) — k(x2) = By (%1 — %2) + Zétﬂ {a1,,%1) + {2, u(n))

i=1
+83i| = [{@1,.%2) + (82, u(n)) + B;
and by using (6), we get

kG = kGl < (IBall+ S el a1 lixs = xal
< (1= eo)lixs — x|

where g0 € (0,1).

Theorem 2 shows that k(-) is a contractive mapping
whenever (6) is satisfied. Thus, after receiving input vector
u(n). which is assumed to be bounded, the function will
always reach a unique equilibrium regardless of its initial
state Xg.




Figure 1: Recurrent Neural Network Structure

4. A PIECEWISE LINEAR RNN STRUCTURE

Based on the definition of the RCPL function given by (3)
and (4), we define the piecewise linear RNN as follows.

Let M =1, N = My, r = N1, 7 = 2M;, u(n) =
y(n) = [yl(n)- YNy (n)]Tv x(n) = [z1(n),---, IM:(")]Tv
é(n) = f(x(n),y(n)), where y(n) is the input vector and
6(n) is the output of the network and zx(n), k =1,2,--- M;
is the output of hidden node k.

For the parameters in (5), we choose a=0, Bo=(q1, g2,
-+, M, ), B1 = 0 and Bo=(p1. p2, - - -, pn, } and for the ones
in (6), ax = 0 (which is the kth element of a), hy, = 0,
hy, =hx, hy, = 0, ck,=1/8 and 8;=4, i=1, ---, M; and
ck;=—1/8 and fi=—4, i=M; +1, --+, 2M,. ao,, =(vk1, k2,
ey vk ) T o1, =0, az, =(wk1,wk2, - winy )T, =1,
2M; and k=1, --, M. The structure is expressed by the
following equations:

Ny

My
o(n) = g(3(n)), o(n) = qizi(n) +_pyi(n) (1)
zx(n) = g(zk(n)) (8)

M, Ny
Fx(n) = hxd(n — 1) + Z Vi, (n — 1) + Zwk.y;(n) (9)
i=1 i=1
for k=1.2,-.., M.

The network defined by (7)-(9) is shown in Figure 1.
Note that the PL-RNN structure we have defined above
involves the introduction of a nonlinearity at the output
which restricts the output of the PL-RNXN to the interval
[-1,1]. It is observed that this modification to the general
RCPL structure given in (3) and (4) has improved the
performance and robustness of the network by pushing the
network parameters into the region that will satisfy the con-
dition given by (6) early on during training.

The activation function for PL-RNNX is chosen as:

s+ 4|—|s—1|

g9(s) 3

Figure 2: Activation Function g(-) for RNN and PL-RNN

and as g(s) = tanh(s) for the traditional RNN by using the
same structure, shown in Figure 1. These two activation
functions are plotted in Figure 2.

If we assume that d(n) is the desired response and se-
lect the mean square error J(n) = E{e*(n)} = E{(d(») —
o(n))*} as the cost function, we can obtain the learning
algorithm by steepest descent minimization of J(n). The
filter coeflicient updates are given by:

g(n+1) = gx(n)+c(n)zi(n) (10)

piln+1) = py(n) +c(n)y,(n)

he(n+1) = hi(n)+ c(n)gr(n)g' (Zx(n))d(n — 1)
v+ 1) = vep(n) + c(n)ge(n)g' (Ex(n))zp(n —1)
wi;(n + 1) wiy(n) + c(n)ax(n)g’ (Zx(n))y,(n) (11)

for k, k'=1,---, My and j=L, --, N1, where c(n)=pe(n)
g'(6(n)), u is the step-size and g'(s) is the derivative of
the nonlinear function evaluated at s, given by

o= { 025 i —4<s<d
g - 0 otherwise

for PL-RNN and g’(s) = 1 — tanh®(s),V s, for the RNN.

5. SIMULATION RESULTS

The performance of the two RNN structures introduced in
section 4 are compared for an equalization example. They
are used in the equalization of the following channel:

y(n) = yi(n) — 0.99; (n) + n(n) (12)

where the multipath component is given by yi1(n) = z(n) +
0.52(n—1), z{n) is the input signal, y(n) is the channel out-
put and 7n(n) denotes the zero mean white Gaussian noise.
The input signal z(n) is assumed to be an independent se-
quence taking values from {—1.1} with equal probability.
The dimension of the observation vector N; is chosen as
2 to be able to visualize the decision boundaries, and the
number of nodes in the hidden layer M; is chosen as 5. The
weights are initialized to uniformly distributed random val-
ues between —0.1 and 0.1 and the algorithm given by Egs.
(10)-(11) is used for training. Several learning parameters
are tested at 15dB signal to noise ratio (SNR) (SNR is de-
fined in terms of the input signal power to the noise vari-
ance). The results that indicate similar performance for
the PL-RNN and the RNN equalizers are shown in Figure
3. For the results shown in Figures 4 and 3, the step-size p
is chosen as 0.7 for PI-RNN and 0.5 for the RNN, a value
which yields the best average performance for each at 15
dB. To obtain the SNR curve shown in Figure 4, the two
equalizers are trained with 10000 samples and then tested
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Figure 3: Convergence curves with varying step-sizes for (a)
PL-RNN; (b) RNN

gIoBLR:

Figure 4: SNR curves for RNN and PL-RNN

for 20000 samples for 50 independent realizations. The two
structures again yield very comparable performance.

The decision regions described by each equalizer also
proved to be similar. In Figures 5a and 5b, we only show
the decision regions formed by the PL-RNN equalizer. Since
for a recurrent structure, the boundaries depend on the
value of the previous network output, we assume that af-
ter convergence, the network output will be mostly {—1, L}
and consider these two cases. Figures 5a and 5b show the
decision boundaires obtained by using PL-RNN at 15 dB
for o{n — 1) = —1 and o(n — 1) = 1 respectively. They
also show the optimal Bayesian decision boundary for these
given network output, o(n — 1), values. Finally, the opti-
mal Bayesian decision boundary for the given channel is
plotted in Figure 5c. As the channel has a memory of
length 1, the observation at time n depends only on the
current and previous value of the input, i.e., on z(n) and
z(n — 1). At time n. let £(n — 1) = —1, then, assuming
noise is zero, the observation y(n — 1) can either be 1.5375
(f z(n —2) = —1) or —0.3875 (if z(n — 2) = 1) for the
given channel model. Hence at time n, there are four pos-

(e

Figure 5: Decision boundary formed by PL-RCPL equalizer
and the optimal Bayesian boundary when (2} o(n — 1) =
—1 and (b) o(n — 1) = 1; (c) Optimal Bayesian decision
boundary for the given channel. ("0” denotes -1 and ”*” 1)

sible observation pairs (y(n), y(n — 1)): (0.3875.1.5375),
(0.3875, —0.3875), (1.3375,1.5375) and (1.5375, ~0.3875),
instead of 8. Note that the first two pairs corresponds to
r(n)=1 and the last two pairs corresponds to z(n)=-1.
This results in a Bayesian based decision boundary plot-
ted shown as the straight line in Figure 5a. Note that the
boundaries obtained using PL-RNN are very close to the
optimal ones. Similar discussion holds for Figure 5b.
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