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Abstract 
There are two dynamics issues in vision chips: (i) The 
temporal! dynamics issue due to the parasitic capaci- 
t,ors in a CMOS chip, and (ii) the spatial dynamics 
issue due t,o the regular array of processing elements 
in a chip. These issues are discussed in [l: 2, 31 for the 
resistor network with only associated parasitic capac- 
itances. However, in this paper we consider also para- 
sitic inductances as well as parasitic capacitances for a 
more precise network dynamics model. We show that, 
in some cases the temporal stability condition for the 
network with p‘ar<a.sitic indllctances and capacitances is 
equivalent to that. for the net.work with only pasasitic 
capacitances, but in general they are not equivalent. 
We also show that the spatial stability conditions are 
equivalent. in both c‘ases. 
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I. Introduction This study h<a.s been motivated 
by spatial versus t.emporal stability issues of <ana- 
log image-processing neuro chips (vision chips). The 
image-smoothing vision chip in [4], for instance, con- 
sists of a regular array of photo-sensors with conduc- 
tances 90 >- 0, 91 > 0, .Q < 0 (Fig.1). We refer the 
reader to [4] for the chip details. Since the chip in- 
volves negative conductances g2: both spatial and tem- 
poral stability issues naturally arise. There are two in- 
triguing element,s. First,, our earlier numerical experi- 
ments suggested that, generally a vision chip is tempo- 
rally st,able if and only if it is spatially stable, where 
spat,ial stability means that, t,he node voltage distri- 
bution behaves “properly.” Second, spat,ial dynamics 
naturally induces a discret,e linear dynamical system so 
t.hat, its stability should be checked by its eigenvalues. 
ii A discrete linear dynamical system is stable if and 
only if all the eigenvalues lie inside the unit circle of 
t,he complex plane.” This st,atement turned out. to be 
false. Namely, due t.o t.he noncausal nature of the dy- 
namics: if X is an eigenvalue. so is l/X, and hence the 
stabilit,y condition for causal linear systems is never 
satisfied. 

Most of the fundamental issues involving these two 

elements have been settled in [l, 21 for 1D and 2D 
array cases. For instance: a network is temporally sta- 
ble if and only if it. is spatially stable, except for a 
set of Lebesgue measure zero in the parameter space. 
Anot,her fundamental result, was that a network is spa- 
tially stable if and only if the eigenvalues of the dy- 
namics are off the unit circle, even though they can 
be outside the unit circle. These results are far from 
trivial. One of reasons that, makes these results crucial 
is the boundary conditions associated with the finite- 
ness of a network. Even if the eigenvalue conditions 
are satisfied! solutions can oscillate or explode if the 
boundary conditions are inappropriate. 

Although the previous results in Il, 2] are com- 
pletely rigorous, the results are for the resistor net.- 
work with only associated parasitic capacitances; as- 
sociated parasitic inductances are neglected as a first- 
order approximation. However, in this pager we con- 
sider parasitic inductances as well as parasitic capac- 
itances for a more precise network dynamics model. 
We show in some cases that the temporal stability 
condition for the network with parasit,ic inductances 
and capacitances is equivalent to that for the network 
with only parasitic capacitances, but in general they 
are not equivalent. We also show that, the spatial st a- 
bility conditions are equivalent in both cases. 

Our approach in this paper is a systematic exploita- 
t.ion of the circulant, network structure for 1D cases; 
speaking roughly, a circulant net,work has a “ring” 
structure as shown in Fig.2 (a). The validity of such 
an approach has already been discussed in [2], and we 
also remark that our results here can be extended to 
2D caSes in a similar manner to [2]. 

II. Formulation Now let, us consider a 1D network 
with IV nodes numbered 0 through N-l, where each 

node k is excited by a current, source ?lk and has an ad- 
mittance yo to ground, and an admitt,ance yP t#o nodes 
(k+p) for p= fl,f2,... * 711. Note that yp = ymP be- 
cause node k connects to node k + p with gP wherens 
node (k + p) connects to node ((k + p) - p), i.e., node 
k with yeP and hence yP = y-,. The network is said 
to be circulant if the rightmost and leftmost, nodes are 



connected together, and thus the network is of a ring 
structure. Fig.2 (a) shows a circulant network where 
m = 2 and the admittance yip is composed of a conduc- 
tance g, and a capacitance cp in parallel (p = 0, 1,2, 
Fig.2 (b)). Then we obtain the following equation from 
Kirchoff Current Law at node k: 

m m 

-ho + 2 c hhk + c yp(l/k-p + ‘tlk+p) + ‘,lk = 0, 
p-- 1 

Then letting 

p:. 1 

v := (vo,v1, ...J,tJ1-l)T, u := (IQ), Ul, . . . . 71,\y1)T: 

00 := -(Yo+25Yp), “p=YpI p = 1; 2: ‘.., m, 
pr: 1 

the st,ate equat.ion is given by 

Yv+u=O 

where 

Y := circl(*&al~ . . . . (YmrO, . ..>o.a,,: . . . . al) 

(1) 

and circl() denot.es a circulant mat,rix [Ej]. Let F be a 
Follrier matrix wit,11 size 5 x N and note that J’* F = I? 
then Eq.(l) leads to 

F*YFF’v + F*u = 0. (2) 

It, follows from [5] that, F*YF is diagonalixed as fol- 
lows : 

F*YF := 11 = diag(&, Xl, . . . . XNml), 

where 

XI, := (yyk + 2 2 ap C0427’&,1\‘) k = i,2! . . . . N-1. 
p=l 

Letting 

-F*v := o = (oO,q, . . . . o,)~, 

F’u := i = (io,il, . . . . i,)T, 

then Eq.(2) reads 

A0 = i. 

Thus if A is nonsingular: the followings are obtained: 

*0 1 (11 1 ON- 1 1 
Y-- =- . . . ,r=-. (3) 
10 

xo! z=p 
2X-l h-1 

We see that the network is temporally stable if and 
only if all t,he transfer functions of Ail, A;‘, . . . . A:$-, are 

stable, i.e., all of their poles are located in the left-half 
of the s-plane. 

This statement is very general for the t.emporal sta- 
bility of the network and is consistent to the previous 
results [l, 2, 31. 

III. RCL Network Now consider the case that the 
admittance yp consists of a conductance gp: a capaci- 
tance cp and an inductance 1, as shown in FiF.3, where 
gp, cp and 1, can be negatiivc. Then the admittance yp 
is given by 

1 

yp = llg,+slp 

+ sc _ gp + scp + “2~pgpcP 

L p - 1 + s&g, . (4) 

The reader may wonder why gp, cp and 1, can be neg- 
ative. For the image processing purpose, some of gp 
have to be negative [4] and this negative conductance 
gp < 0 can be implemented with a positive conduc- 
tance gL(= -gp) > 0 and two admittance inverters as 
shown in Fig.4. Let ci and 1; be parasitic cap‘acitance 
and inductance associated with gk. Even if cb ‘and 1: 

are positive, these can be effectively negative between 
the nodes A and B due to the two admittance invert- 
ers; the effective admittance yp between the nodes A 

and B is equal to -yL. Note also that in the previous 
cases [ 1: 2, 31, the parasitic inductances were neglected 
as shown in Fig.2 (b) where I, = 0. 
Proposition 1 Consider t,he RCL network where yp 
is given in Fig.3 and also the following restriction is 
satisfied: 

l,gp = d > 0 forp=0,1,2 ,...! m, (5) 

where d is a positive constant. In this case the tempo- 
ral stability condition of the RCL network is equiva- 
lent to that of the RC: net.work (where L is neglected 
as shown in Fig.2 (b).) 
Proof : It follows from &s.(4) and (5) that ap!s are 
given by 

Qo := 
(go + 2 c;“=, gp) + (s + s”d)(co + 2 C;zl cp) 

1 + sd 

cyp := yp = 
.9p + scp + s’dc, 

1 + sd 
for p= 1,2 ,..., m. 

Then the transfer functions of Xi1 described in Q.(3) 
are given by 

1 -(l+ sd) 
-= 
xk -pk + sl% + S2dl/k 

for k = 0,1,2, . ..! N-1: 

where 

,.ik := -(go f 2 2 gp) + 2 g gp cos(27rpk/N) 
p=l p=l 



l/k := -(co + 2 2 c,) + ‘2 -g cp cos(27rpk,N). 
This result means that in addition to the negative def- 

p=l p-1 
initeness of the system matrix A: the positive definite- 
ness of the capacitance matrix 13 and do > 0, dl > 0. 

From the Routh-Hurwitz stabilit,y criteria, we obtain we need to satisfy the following conditions: 

the following t,emporal stability condition: & + /&dig1 + co + &jkc] > O! (7) 

--/Lk > 0: i/k > 0, dvk > 0, dr;,” > 0 for k = 0, 1: 2, . . . . N-l. d,go + ,&dog1 + cg + &cl > 0. (8) 

Then the above conditions yield to the following: 

/LA; < 0: l/k > 0, d > 0 for k = 0, 1, 2: . . . . 1X’-1. (6) 

Let us compare t.his result (Eq. (6)) to t.he RG network 
case in [l: 21. “pk < 0 for all k = 0, 1,2, . . . . N-l” means 
that. the system matrix A [l: 21 is negative definite, and 
%k > 0 for all k = O! 1,2, . ..) AT-l” is equivalent to that 
the capacitance matrix B [l! 21 is positive definite. We 
see that, the temporal stabilit,y condition of the RCL 

network which satisfies Eq.(rj) is equivalent, to that of 
the Rcr network. (Q. E. D.) 
Proposition 2 If l,g, # I,g, for some 0 < p, q 5 
rn.. t.hen the temporal stability condition of the RCL 

network is not necessarily equivalent, to t,hat of the 
Rc’ network. 
Proof : Consider f he caSe m = 1 and 1090 # llgl. 
Then it. follows from Eq.(4) t.hnt, 

y. = (go + sq, + s”doc:o)/(l + sdo), 

yt = (gl + scl + s”dlcl)/(l + sdl), 

where do := logo, dl := llgl and do # dl. Then the 
tzansfer functions described in Eq.(3) are given by 

1 1 
-= 
xk a0 + 2al cos(2rk/N) 

1 (1 + sdc,)(l + sdl) 

--(y,, + 2y,) + 2yl cos(2rk/hT) = - 7’.k (-9) 

where 

c.(, := g”&gl: f:l := d,go t /&dog1 + Co + rijj&I, 

e2 := (do + dl)(co + &C,). c3 := dodl(co +,&c,), 

tiijk := 2(1 - cos(2rk/N)). 

It, follows from the Routh-Hurwitz stability criteria 
that, the network temporal stability condition is given 

by 

e. > 0, el > 0, e2 > 0, c3 > 0: ele2 - em > 0. 

If do = dl > 0 (i.e. Eq.(5) is satisfied), t,he negative 
definiteness of A and the positive definit.eness R aut.o- 
matically lead to the above condit,ions (7), (8). how- 
ever, if do # dl , they do not,. Hence in t,his case the 
t.emporal stability condition is more st,rict than that, 
in the RCr net.work. (Q.E.D.) 
Proposition 3 The spatial stability condition of the 
RC’L network is equivalent to that of the RC network. 
Proof : We need to consider the equilibrium point, 
for the spatial stability, and at the equilibrium, the 
admittance yp is given by 

Y&o = 
1 

l/g, + *% 
+ scply=l) = gr,. 

This is the same as yp at the equilibrium in t,he Rc 

network, and hence t,he spatial stability conditions are 
equivalent in both cases. (Q.E.D) 
Lemma In the KCYL network where yp consists of gpt 
cp and 1, as shown in Fig.4 and Eq.(5) is satisfied, the 
spatial and temporal stability conditions are virtually 
equivalent. 
Proof : Note that, the spatial and temporal stabil- 
ity conditions of the RC network are virtually equiv- 
alent [l, 21. Then we see that according to this fact. 
arid Propositions 1, 3: the above statement is valid. 
(Q.E.D.) 

Acknowledgments 
We would like to thank Y. Togawa and K. Wilkinson 
for valuable discussions. 

References 

[II 

PI 

PI 

PI 

I51 

T. Matsumoto, H. Kobayashi &, Y. Togawa, “Spatial 
Versus Temporal Stability Issues in Image Process- 
ing Neuro Chips, ” IEEE Tmm. on Neuml Network, 
~01.3, 110.4, 540-569, July 1992. 
H. Kobayashi, T. Matsumoto, br. J. Sanekata, “Two- 
Dimensional Spatio-Temporal Dynamics of Analog Im- 
age Processing Neural Networks, ” IEEE 7ban.s. on 
Neural Networlcs, ~01.6, no.5, 1148-1164, Sept. 1995. 
J. L. White and A. N. Willson, Jr., “On the Equiva- 
lence of Spatial and Temporal Stability for ‘I\anslation 
Invariant. Linear Resist,ive Networks,” IEEE 7’run.s. on 
Circuits and Syste7rwI, vo1.39: no.9. 734-743, Sepl. 
1992. 
H. Kobayashi, J. L. White, & A. A. Abidi, “AtI Ac- 
tive F&istor Network for Gaussian Filtering of’ Im- 
ages,” IEEE J. Solid-State Circuits, ~01.26, no.5, 738- 
748, May 1991. 
P. J. Davis, Cimulant Matrices. John Wiley & Sons, 
1979. 



Fig.1 The imag~smoothing neuro chip. Only one unit 
is shown. 

Fig.2 (a) A 1D circulant neiwork with m = 2. 

conductance gP and a capacitance cp in parallel (p = 

CP 

Fig.3 : The ad ml ‘tt ante yP consists of a conductance 
gP, a capacitance cP and an inductance 1,. 

-j-qb 

(b) The admittance yP in Fig.2 (a) consists of a 

0, 1,2.) 

B 

admittance admittance 
invefter inverter 

Fig.4 : Admittance inverters can realize negutive conductances, capacitances and inductances. Suppose 

that VA, V,, Vi and VA are node voltages of A, B, A’ and B’, and also VA > V’. Then, due to the voltage 

followers, VA x VA and V, z VA, and the current I flows from node A’ to B’ with I = yL(Vi - VA). We 
see that the current I effectively flows from node B to node A with I = yi(V~ - Vs) and the admittance 

yP between node A and B is effectively equal to -3;. 


