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Abstract

There are two dynamics issues in vision chips: (i) The
temporal dynamics issue due to the parasitic capaci-
tors in 3 CMOS chip, and (ii) the spatial dynamics
issue due to the regular array of processing elements
in a chip. These issues are discussed in {1, 2, 3] for the
resistor network with only associated parasitic capac-
itances. However, in this paper we consider also para-
sitic inductances as well as parasitic capacitances for a
more precise network dynamics model. We show that
in some cases the temporal stability condition for the
network with parasitic inductances and capacitances is
equivalent o that for the network with only parasitic

apacitances, but in general they are not equivalent.
We also show that the Spaual Dtclbiuuy conditions are

equivalent in both cases.
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I. Introduction This study has been motivated
by spatial versus temporal stability issues of ana-
log image-processing neuro chips (vision chips). The
image-smoothing vision chip in [4], for instance, con-
sists of a regular array of photo-sensors with conduc-
tances go > 0, g1 > 0, g2 < 0 (Fig.1). We refer the
reader to [4] for the chip details. Since the chip in-
volves negative conductances g,, both spatial and tem-
poral stability issues naturally arise. There are two in-
triguing elements. First, our earlier numerical experi-
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rally stable if and only if it is spatially stable, where
spatial stability means that rhe node voltage distri-
bution behaves “properly.” Second, spatial dynamics
naturally induces a discrete linear dynamical system so
that its stability should be checked by its eigenvalues.
“ A discrete linear dynamical system is stable if and
only if all the eigenvalues lie inside the unit circle of
the complex plane.” This statement turned out to be
false. Namely, due to the noncausal nature of the dy-
namics, if A is an eigenvalue, so is 1/A, and hence the
stability condition for causal linear systems is never
satisfied.

Most of the fundamental issues involving these two
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elements have been settled in {1, 2] for 1D and 2D
array cases. For instance, a network is temporally sta-
ble if and only if it is spatially stable, except for a
set of Lebesgue measure zero in the parameter space.
Another fundamental result was that a network is spa-
tially stable if and only if the eigenvalues of the dy-
namics are off the unit circle, even though they can
be outside the unit circle. These results are far from
trivial. One of reasons that makes these results crucial
is the boundary conditions associated with the finite-
ness of a network. Even if the eigenvalue conditions
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are satisfied, soluhon s can oscillate or explode if the
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work w1th only associated parasitic capacitances; as-
sociated parasitic inductances are neglected as a first-
order approximation. However, in this paper we con-
sider parasitic inductances as well as parasitic capac-
itances for a more precise network dynamics model.
We show in some cases that the temporal stability
condition for the network with parasitic inductances
and capacitances is equivalent to that for the network
with only parasitic capacitances, but in general they
are not equivalent. We also show that the spatial sta-

bility conditions are equivalent in both cases.

Our approach in this paper is a systematic exploita-
tion of the circulant network structure for 1D cases;
speaking roughly, a circulant network has a “ring”
structure as shown in Fig.2 (a). The validity of such
an approach has already been discussed in [2], and we
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also remark that our results here can be extended to
2D cases in a similar manner to [2].

II. Formulation Now let us consider a 1D network
with N nodes numbered 0 through N-1, where each
node k is excited by a current source 1, and has an ad-
mittance yo to ground, and an admittance y, to nodes
(k+p) for p=+£1,£2,... £ m. Note that y, = y, be-
cause node k connects to node k + p with y, whereas
node (k + p) connects to node ({(k + p) — p}, i.e., node
k with y-, and hence yp = yp. The network is said
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connected together, and thus the network is of a ring
structure. Fig.2 (a) shows a circulant network where
m = 2 and the admittance y,, is composed of a conduc-
tance g, and a capacitance ¢, in parallel (p = 0, 1,2,
Fig.2 (b)). Then we obtain the following equation from
Kirchoff Current Law at node &:

m

m
—(yo+2 Z Yp)Vk + Z Yp(Vik-p + Vie4p) + ur = 0.
p:-_l p--1

Then letting

v := (v, V1, ...,1)Nl-1)T, u = (ug, Uy, ...,uNl_l)T.

m
ag = —(yo + QZyp), op=1yp, p=12,..,m,
p=1

the state equation is given by
Yv+u=0 (1)
where
Y = circl(og, aty ey @y 0 o, 0, Gy ooy 1)

and cirel() denotes a circulant matrix [5]. Let F be a
Fourier matrix with size N x N and note that F*F =1,
then Eq.(1) leads to

F*YFF*v+ F*fu=0. (2)

It follows from [5] that F*Y F' is diagonalized as fol-
lows:

F*YF:=A= di(lg(/\(), Al, ...,/\N_l),

where
M=ok +2)  apcos(2mpk/N)  k=1,2,..,N-L
p=1
Letting
—F*v:=0= (00,01, 0m)7,

Fru:=1i= (ig,14.rim) 7,

then Eq.(2) reads
Ao =i

Thus if A is nonsingular, the followings are obtained:

0p 1 01 1 ON-1 1
—_— = T T T/ Ty e ,,—Z . (3)
o Ao 1 A iN-1  AN-1
We see that the network is temporally stable if and
only if all the transfer functions of Ag!, A{, ..., Ay, are

stable, i.e., all of their poles are located in the left-half
of the s-plane.

This statement is very general for the temporal sta-
bility of the network and is consistent to the previous
results [1, 2, 3].

ITI. RCL Network Now consider the case that the
admittance y,, consists of a conductance g,, a capaci-
tance ¢, and an inductance [, as shown in Fig.3, where
gp, ¢p and [, can be negative. Then the admittance y,
is given by

1 gp + scp + $2lpgptp
T g e, CPT T 1+ |
/9p + slp Fslpgp

Yp (4)
The reader may wonder why g, ¢, and [, can be neg-
ative. For the image processing purpose, some of g,
have to be negative [4] and this negative conductance
gp < 0 can be implemented with a positive conduc-
tance g,(= —gp) > 0 and two admittance inverters as
shown in Fig.4. Let ¢, and [, be parasitic capacitance
and inductance associated with g,. Even if ¢, and [,
are positive, these can be effectively negative between
the nodes A and B due to the two admittance invert-
ers; the effective admittance y, between the nodes A
and B is equal to —yl’p. Note also that in the previous
cases [1, 2, 3], the parasitic inductances were neglected
as shown in Fig.2 (b) where [, = 0.
Proposition 1 Consider the RC'L network where y,
is given in Fig.3 and also the following restriction is
satisfied:

lpgp =d >0 for p=0,1,2,...,m, (5)
where d is a positive constant. In this case the tempo-
ral stability condition of the RC'L network is equiva-
lent to that of the RC network (where L is neglected
as shown in Fig.2 (b).)
Proof : It follows from Eqgs.(4) and (5) that a,’s are
given by

(90 +2 z;n=1 gp) +(s+ szd)(co + 22::1 cp)
Qp = s
1+ sd

_ gpt scp + s7dey

ap i=Yp = [+ sd forp=1,2,....m.

Then the transfer functions of A;! described in Eq.(3)
are given by

1 —(1+ sd)
Me  —pk + sy + s2dig

for k=0,1,2,...,N-1,
where

™m m
Bk = —(go + 2 ng) +2 ng cos(2mpk/N)
p=1 p=1



g = —(ep + QZ cp) + 22 cpcos(2mpk/N).
p=1

p=1

From the Routh-Hurwitz stability criteria, we obtain
the following temporal stability condition:

—t >0, vy >0, dvg >0, dvE >0for k=0,1,2,..., N-1.

Then the above conditions yield to the following:

e <0, 1 >0,d>0  fork=0,1,2,...,N-1. (6)

Let us compare this result (Eq.(6)) to the RC' network
casein [1,2]. “ux < Oforallk =0,1,2,..., N-1” means
that the system matrix A [1, 2] is negative definite, and
“m>0forallk=0,1,2,..., N-1" is equivalent to that
the capacitance matrix B [1, 2] is positive definite. We
see that the temporal stability condition of the RCL
network which satisfies Eq.(5) is equivalent to that of
the RC network. (Q. E. D)

Proposition 2 If [,g, # l3g, for some 0 < p,qg <
m. then the temporal stability condition of the RCL
network is not necessarily equivalent to that of the
RC network.

Proof : Consider the case m = 1 and lggg # l141.
Then it follows from Eq.(4) that

Yo = (go + sco + 52doco) /(1 + sdy),

Y1 = (g1 + scy + s2dic1)/ (L + sdy),

where dg := lypgg, d1 := l1g; and dy # d;. Then the
transfer functions described in Eq.(3) are given by

1 1

A ag + 2a; cos(2mk/N)

1 (1+ sdg)(1 + sd,)

~ —(yo + 2y1) + 2y cos(2mk/N) ng(s)

where

nk(s) := eg + se; + s%ey + sPes,
€0 = goBkg1, €1:= digo + PBkdog1 + co + Bkc,
€y 1= ((io + dl)(Co + ﬁk(.‘l), €3 1= d()dl(C() + ,BkC]),

Bk := 2(1 — cos(27k/N)).

It follows from the Routh-Hurwitz stability criteria
that the network temporal stability condition is given
by

e >0, e > 0, e >0, e3> 0, eyey — eges > 0.

This result means that in addition to the negative def-
initeness of the system matrix A, the positive definite-
ness of the capacitance matrix B and dy > 0,d; > 0.
we need to satisfy the following conditions:

digo + Bredigy + o + Brer > 0, (7)

digo + Brdogr + co + Brer > 0. (8)
If dg = dy > 0 (i.e. Eq.(D) is satisfied), the negative
definiteness of A and the positive definiteness B auto-
matically lead to the above conditions (7), (8), how-
ever, if dy # dy, they do not. Hence in this case the
temporal stability condition is more strict than that
in the RC network. (Q.E.D.)
Proposition 3 The spatial stability condition of the
RCL network is equivalent to that of the RC' network.
Proof : We need to consider the equilibrium point
for the spatial stability, and at the equilibrium, the
admittance yj,, is given by

1
e = T,

This is the same as y, at the equilibrium in the RC
network, and hence the spatial stability conditions are
equivalent in both cases. (Q.E.D)

Lemma In the RCL network where y,, consists of g,
¢p and [, as shown in Fig.4 and Eq.(5) is satisfied, the
spatial and temporal stability conditions are virtually
cquivalent.

Proof : Note that the spatial and temporal stabil-
ity conditions of the RC' network are virtually equiv-
alent (1, 2]. Then we see that according to this fact
and Propositions 1, 3, the above statement is valid.

(Q.ED.)
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Fig.1 The image-smoothing neuro chip. Only one unit Fig.3 : The admittance y, consists of a conductance
is shown. . 9p, & capacitance ¢, and an inductance lp.
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Fig.2 (a) A 1D circulant network with m = 2. (b) The admittance y, in Fig.2 (a) consists of a
conductance g, and a capacitance ¢, in parallel (p = 0,1,2.)
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Fig.4 : Admittance inverters can realize negative conductances, capacitances and inductances. Suppose
that V4, Vg, V4 and Vi are node voltages of A, B, A’ and B, and also V4 > V5. Then, due to the voltage
followers, V4 =~ V4 and Vp ~ Vj, and the current I flows from node A’ to B’ with I = Yp(Va — V). We
see that the current / effectively flows from node B to node A with I = y,(Va — Vp) and the admittance
Yp between node A and B is effectively equal to —y,.




