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Abstract -We generalize the Wiener-Khinchin the- 
orem. A full generalization is presented where both 
the autocorrelation function and power spectral den- 
sity are defined in terms of a general basis set. In ad- 
dition, we present a partial generalization where the 
density is the Fourier transform of the autocorrelation 
function but the autocorrelation function is defined in 
terms of an arbitrary basis set. Both the deterministic 
and random cases are considered. 

1. INTRODUCTION 

The Wiener-Khinchin theorem is one of the fun- 
damental results of signal analysis. It expresses the 
power density in terms of the autocorrelation func- 
tion. One of the reasons for its importance is that for 
random signals the Fourier transform may not exist 
but the power spectral density, obtained from the au- 
tocorrelation function does exist. In addition, the au- 
tocorrelation function is a directly measurable quan- 
tity. While one usually associates the Wiener-Khinchin 
theorem with random signals it holds for both random 
and deterministic signals. 

In the introduction we briefly review the standard 
Wiener-Khinchin theorem and also review transforms 
in representations other then frequency. Subsequently 
we present the generalization of the Wiener-Khinchin 
theorem for arbitrary physical variables or representa- 
tions. 

Standard WienerXhinchin: 
Deterministic Signals 

We define the Fourier transform and its inverse by2 

F(w) = & 
J 

f(t) e-jwt dt (1-l) 

1 Work supported by the Office of Naval Research under contract 
No. N00014-97-l-0058. Also supported in part by the NASA JOVE 
and the NSA HBCU/MI programs. 

2All integrals go from -co to 00 unless otherwise noted. Multi- 
ple integrals are denoted with a single integral sign, the number of 
integrals is noted by the number of differentials. 

f(t) = & 
I 

F(w)ejw’du (14 

The energy density spectrum (for frequency) defined 
by IF(W)]‘, can be expressed as 

lF(w)12 = & 
I 

R(T) e-jwr dr (1.3) 

where, R(T), is the deterministic autocorrelation func- 
tion, 

R(r) = k - 
I 

f*(t) f(t + T) dt (14 

This is the Wiener-Khinchin theorem for deterministic 
signals. 

Standard Wiener-Khinchin: 
Random Signals 

We give a brief derivation of the standard Wiener- 
Khinchin theorem to motivate the method used to de- 
rive the generalization in the subsequent sections [3]. 

Given a function whose Fourier transform may or 
may not exist one defines a function for a finite interval 

For random signals the power per unit frequency 
(power density spectrum), S(w), is defined by 

(14 

where E[ ] is the ensemble averaging operator. 
The process autocorrelation function is R(t, T) = 
E[f*(t)f(t + r)] and the time averaged process auto- 
correlation function, R(T), is the time average of the 
process autocorrelation function, 

R(T) = T”rn, $ /’ E[R(t, t + T)] dt (1.7) 
-T 

The time autocorrelation function is 

R(T) = Tlimm & 
I 

T 

f’(t) f(t + T> dt (1.8) 
-T 



If the system is ergodic then R(T) = 72(r) Now, the 

Fourier transform of jr, 

FT(w) = -& 
I 

T 

-T f(t) e-jut dt (1.9) 

and using Eq. (1.3) and (1.4) we have 

IFT(‘J)l’ = -& I RT(T) e-jwr dr (1.10) 

RdT) = & - I f+(t) fT(t + r) dt (1.11) 

In Eq. (1.10) take the ensemble average of both sides 

and then the time average to obtain one form of the 

Wiener-Khinchin theorem. 

S(w) = & I R(T) e-jwr dr (1.12) 

with 

R(r) = (1.13) 

If the explicit form for RT(T) is inserted in Eq. (1.13) 

we have that 

R(T) = & :, -ELT’lm, & 1 f;(t) fT(t + T) 4 (1.14) 

T 

= &% & -T I f’(t) f(t + T) dt (1.15) 

In going from Eq. (1.14) to Eq. (1.15) we assumed er- 

godicity. Also, note that while it is not the case that 

s f;(t) fT(t + T) dt equals sTT f’(t) j(t + T) dt, they 
do become equal in the limit of T + co. 

Basis Sets [1,2] 

If we have physical variable a associated with the ba- 

sis set (transformation matrix), ~(a, t), then the trans- 

form, F(a), and its inverse in the a representation is3 

F(a) = I f(t) u*(a, 1) dt (1.16) 

f(t) = 1 f’(+W)da (l-17) 

The basis sets are generally obtained as the solution 

to the eigenvlaue problem for an associated Hermitian 

operator, A, 

du(a,t) = au(a,t) (1.18) 

3For the sake of simplicity we consider self reciprocal bases. Ex- 
tension to non-reciprocal bases is straightforward. Also, integrals 
are assumed to go over the region defined by the range of the 

variables. 

The transformation matrix satisfies orthogonality and 

completeness 

I u(a, t) u*(a,t’) da = 6(t -t’) (1.19) 

I u(a, t) u*(a’, t) dt = b(a - a’) (1.W 

2.GENERALIZATION: DETERMINISTIC SIGNALS 

We first give the generalization of the deterministic 

autocorrelation function R(T). It can be expressed in 

two different forms, 

In Eq. (2.3) u(d(t), r) means that for the variable a in 

R(T) = I f’(t) 4% T> f(t) dt (2.1) 

= I f*(t) u*(a, t’)u(a,t)u(a,?-) f(t’) dadt’dt 

(2.2) 

u(a, r) we substitute the operator A. The generaliza- 

tion of the Wiener-Khinchin theorem for deterministic 

signals is then 

IF( = /R(T) u*(a, 7) dr (2.3) 

We now prove Eq. (2.3) with R(r) given by Eq. (2.2). 

Consider [ 1,2] 

I R(r) u*(a, T) dr (2.4) 

= I f’(t) u*(a’,t’)u(a’, t)u(a’, 7)u*(a, r) f(t’) 

da’ dt’ dt dr (2.5) 

= I f*(t) u*(a’, t’)u(a’, t)b(a - a’) f(t’) da’ dt’(2.6) 

= I f*(t)u*(a,t’)u(a,t)f(t’) da’dt’ (2.7) 

= lW12 (2.8) 

which proves our assertion. 

It now remains to prove the equivalence of Eq. (2.1) 

with Eq. (2.2). Consider4 

4% T) f(t) = u(A 7) J F(a) u(a, t> da (2.9) 

= I F(a) u(a, r)u(a, t) da (2.10) 

‘We use the general theorem that for any function, g(d), 

g(.A)u(a, t) = g(a)u(av t) PA 



= I f(t’) u*(a, t’) u(a, r)u(a, t) da dt’ (2.11) 

Hence, multiplying this by f*(t) and integrating we 

obtain Eq. (2.2). 

3. GENERALIZATION: RANDOM SIGNALS 

We define, respectively, the generalized autocorre- 

lation function and power density for the variable a 

bY 

R(r) = E[fiW) 44 ~1 h(t) 1 dt (3.1) 

S(a) = $mrn GW~IFn(~)121 (3.2) 

where R is a region and q(Q) is a function of that region 

chosen so that the transform of the random function 

exists 

Fn(a) = I fn(t) u*(a, t) dt = I f(t) u*(a, t> dt n (3.3) 
and so that the limit in Eq. (3.1) and Eq. (3.2) exist. 

The generalization of the Wiener-Khinchin theorem 

for stochastic signals is then 

S(a) = J R(T) u*(a, T) dr (3.4 

To prove Eq. (3.4) we follow the same basic idea that 

is used to derive the standard Wiener-Khinchin theo- 

rem. Consider 

Ih( = 1 h(T) u*(a, T> dT (3.5) 

where R~(T) is the deterministic autocorrelation func- 

tion 

&I(T) = I f;(t) u(d, T> fan(t) dt (3.6) 
Taking the ensemble average in Eq. (3.5) and the ap- 

propriate limits we have that 

S(a) = $nrn cWW’n(~)121 VI 

= nlif”m rl(n)E[/ &I(T) u*(a, T> dT1 (3.8) 

= 
I 

$-mm ~(fl)E[Rd~)l u*(a, r) d7 (3.9) 

= I R(T)u’(a, T) dr (3.10) 

which is Eq. (3.4) above. 

4. CHARACTERISTIC FUNCTION OPERATOR 

We now give a generalization that involves the char- 

acteristic function. In this generalization the character- 

istic function is defined in terms of an arbitrary basis 

set, but the density is given as the Fourier transform of 

the characteristic function. The characteristic function 

here plays the same role as the autocorrelation func- 

tion. For the Fourier basis set the characteristic func- 

tion and autocorrelation function are the same. Again, 

we derive our results for both the deterministic and 

random case. 

The Fourier transform of a density is the character- 

istic function. In our case the density is I F( a)j2 and 

therefore the characteristic function is5 

with 

M(B) = I IF( eje” da (4.1) 
IF( = &J M(B)e-jea d6 (44 

The characteristic function can always be written as 

M(0) = I f*(t) ejeAf(t) dt (4.3) 
Consider the right hand side of Eq. (4.2) and use Eq. 

(4.3) for M(B) to obtain 

1 

2;; I M( e)e-jeo dfl 

= & / f*(t) PAf(t)e-jeo dt de (4.5) 

= &J F*(a’)u*(a’,t)ejeAF(a”)u(a”, t)e-jet 

dt d0 da’ da” (4.6) 

= & J F*(a’)u*(a’, t)ej’““F(a”)u(a”, t)e-jeo 

dt de da’ da” (4.7) 

= F’(a’)F*(a)b(a - a’)da’ = IF(a I (4.8) 

This result can be seen as a partial generalization when 

compared to that given by Eq. (2.3). 

5 For this section we use the standard 27r convention for charac- 
teristic functions. 



For the random case start with It can be verified directly that indeed 

Ih( = - 2’, I M*(e) e-jeO de (4*9) 
where 

Mn(e) = I f;(t) ejeA h(t) (4.10) 

Taking the ensemble average and appropriate limit 

we have that 

S(a) = & J M(0) e-joe de (4.11) 

with 

M(e) = nhm & 1 E[fA(t) ejeA fn(t)] dt (4.12) 

5. EXAMPLES 

Example 1: Frequency 

It can be readily verified that if we take the standard 

Fourier basis 

u(w,t) = -& ejw’ 

then all the standard Wiener-Khinchin results are ob- 

tained when inserted into our generalization. 

Example 2: Scale 

The scale basis, 7(c, t), and operator, C, are respec- 

tively 

1 ejcht 
7(c,t) = z 7 I t 2 0 

c= gt$+$t) 

The scale transform, D(c), and inverse are 

D(c) = I O” f(t)r*(c,t)dt 
0 

f(t) = I D(c) 7(c, 2) dc 
Using Eq. (2.2) we find that 

W = & om f’(t) W) dt 
I 

(5.2) 

(54 

(5.4) 

(5.5) 

(5.6) 

I WI2 = I” R(r) 7*(c) T) dr (5.7) 

These equations can be considered as generalizations 

of the Wiener-Khinchin theorem for deterministic sig- 

nals scale. For the random case one defines 

fnn(t) = { of(t), esT 5 t 5 eT; 
otherwise. (5.8) 

I 

and the autocorrelation is 

R(r) = ‘&Ei$-$ ,T Je-T I f;r(t) fr4t.r) 4W) 

e= 

= &em ,T ye-T e-T f*Wf(t~)dtWJ) I 
For the characteristic function method, we have, us- 

ing Eq. (4.3) 

M(B) = I O” f*(t) ejec f(t) dt (5.11) 
0 

= I om f*(e-‘j2t) f(eej2t) dt (5.12) 

Again, it can be directly verified that 

ID(C = & J M(B) e-jet de (5.13) 

6. CONCLUSION 

We have presented two generalizations of the 

Wiener-Khinchin theorem. The first generalization is 

a full generalization where both the autocorrelation 

function and power density are defined in terms of a 

general basis set. In the second generalization the den- 

sity is the Fourier transform of the characteristic func- 

tion but the characteristic function is defined in terms 

of an arbitrary basis set. Both generalizations reduce 

to the standard Wiener-Khinchin result for the Fourier 

basis set. 
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