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ABSTRACT

Methods for utterance verification (UV) and their
integration into statistical language modeling and
spoken language understanding formalisms for a
large vocabulary spoken understanding system are
presented. The paper consists of three parts. First.
a set of acoustic likelihood ratio based utterance
verification techniques are described and applied
to the problem of rejecting portions of a hypoth-
esized word string that may have been incorrectly
decoded by a large vocabulary continuous speech
recognizer. Second, a procedure for integrating the
acoustic level confidence measures with the statisti-
cal language model is described. Finally, the effect
of integrating acoustic level confidence into the spo-
ken language understanding unit (SLU) in a call-
type classification task is discussed. These tech-
niques were evaluated on utterances collected from
a highly unconstrained call routing task performed
over the telephone network. They have been evalu-
ated in terms of their ability to classify utterances
into a set of fifteen semantic actions corresponding
to call-tvnes that are :\r'renfntl bv the ,\nnhr\ahnn

YT LIlat DY e appllcatloll.

In this paper, utterance verification techniques are applied
to an automated call routing task [1, 6]. The distinguish-
ing aspect of this task is that it attempts to derive a small
number of semantic actions from utterances spoken by users
who may have little or no l(nnwled_op of the ll_m_!tah(ms of the
system. It is often the case that the utterances that are pre-
sented to the system have no relevance at all to the domain
Lngllnn rnnf:\ln wnnlc or nhra;pc I‘}\:ﬂ are not l:\rn!nnnfn
vocabular_v words, or were not u)rrectl) r((og.,mzed by the
ASR component of the system. The call routing task and

the characterictics of the nttera tha tacl
Uhe cnaraciernstics o1 vne uttera the task

are briefly described in Section 2.
IL is often thv case that human- mac hine interfaces arc
\.uuug.,uuu $0 that a mrge percentage of the lllp’l’li uttcrances
are ill-formed. This is the case for user-initiated human-—
machine dialog [11, 3], automation of telecommunications
services [9]. and is certainly true in case for machine inter-
pretation of human human dialog [2, 8]. Utterance verifica-
tion in this context implies the ability to detect legitimate
vocabulary words in an utterance that 15 assumed to con-
tain words or phrases which are not explicitly modcled in
the speech recognizer. However, even when input utterances
tend to be well-forined and contain relatively few out—of-
vocabulary (OOV) words, UV techniques can be applied
to determine when decoded word hypotheses are correct.
These procedures have been shown to improve performance
in a number of applications where OOV utterances are rel-
atively rare including telephone based connected digit and

command word recognition [3].
A set of acoustic likelihood ratio (!
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UV results for these measures on the call routing task are
described. These measures are similar to a set of techniques
that we i
alog task [3]. Each hypothesized word or phrase obtained
from the ASR decoder is associated with a confidence mea-
sure and passed along to t
weight decisions in cla:
type.

A mechanism by which acoustic and linguistic informa-
tion can be combined through incorporating the notion of
acoustic confidence in a stochastic automaton (SA) is dis-
cussed 1n Section 4. There are a number of exampies of
confidence measures that incorporate both acoustic and lan-
guage level scores [4]. The approach that is considered here
attempts to extend the notion of a stochastic automaton
which is currently used to describe an N-gram language
model for speech recognition [7]. In the simplest case. a
state in a SA may correspond to a word context for some
word w,. and the weight on an arc extending from the state
would correspond to the probability of producing w, given
the previous state. There are a number of ways in which
acoustic confidence could be incorporated into this frame-
work. In Section 4, we investigate a method where the
delinition of a state in the language model can be expanded
to include not only the word context but also a discrete.
coded representation of the acoustic confidence obtained for
the word history. By including an additional state variable
corresponding to aconstic confidence we thereby expand the
state space of the acar\rmtﬂrl QA

( l¢:~.~|ﬁcat10n of spoken utterances into a small number of
semantic categories by the SLU involves searching through
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from the input speech. Section 5 describes how word level
acou:ll( confidence scores are used in the process of obtain-
ing the a posteriori probabilities that are associated with

these grammar fragments.

2 AUTOMATED CALL ROUTING TASK

The utterances used for the experimental study described
in this paper were taken from spoken transactions beiween
customers and human telephone opcrators over the public
switched telephone network. The utterances corrwpond Lo
customers responses to the open-ended prompt “How may I
help you?™ [6]. T'he first utterance from the customer in this
transaction was transcribed and labeled according to one of
filteen call-types. The call-types themselves (orrespond to
a set of actions relating to the routing of the incoming call.
Ixamples of these call-tvpes include collect, calling card,
and third party billing, with an additional~other™ type to
handle calls that do not correspond to those that have been
defined. A set of 2243 utterances were used for training sub-



word acoustic acoustic hidden Markov models (HMM), and
a set of 1000 utterances were used as a test set. The utter-
ances were an average of 5.3 scconds in duration. with the
longest utterance being 52.7 seconds. There is an average
of nincteen words per utterance with an out of-vocabulary
rate in the test data at the utterance level of thirty percent.
The best ASR performance on this test set using context
dependent acoustic models and a variable phrase N-gram
stochastic antomaton (VNSA) language model is relatively
low (approximately 55 - 60 percent word accuracy) [6]. Fur-
thermore. the base line performance on this test set for a
rcal-time system that was used in these experiments is ap-
proximately 45 percent word accuracy.

3 ACOUSTIC MEASURES FOR UTTERANCE
VERIFICATION

This section presents a likelihood ratio (LR) based proce-
dure for generating word level acoustic confidence measures.
First. the UV problem is presented in a hypothesis test-
ing framework. Second, the form of the densities used in
the LR based hypothesis test for UV is described and the
methods used for training the model parameters associated
with these densities is presented. Finally, a simple non-
parametric approach is presented for converting these LR
scores to a posteriori probabilities for use in the SLU sys-
tem.

[t is assumed that the input to the speech recognizer is a
sequence of feature vectors Y = {§1.72..... ¥} representing
a speech utterance containing both within—vocabulary and
out—of vocabulary words. 'The within-vocabulary words
will be referred to here as belonging to the class of “tar-
get” hypotheses and the out—of-vocabulary words will be
referred to as “imposters” or belonging to the class of al-
ternate hypotheses. Incorrectly decoded vocabulary words
appearing as substitutions or insertions in the output string
from the recognizer will also be referred to as belonging to
the class of alternate hypotheses. 1t is also assumed that the
output of the recognizer is a single word string hypothesis
W =, ... wy of length K. Of course. all the discussion in
this section can be easily generalized to the problems of ver-
ifying one of multiple complete or partial string hypotheses
produced as part of an N-best list or word lattice as well.

Under the assumptions of the Neyman- Pearson hvpoth-
esis testing framework, both the target hypothesis and al-
ternate hypothesis densities are assumed to be known. In
the context of UV, it will be assumed that the target or
correct hypothesis model A° and the alternate modcl A®
corresponding to a hypothesized vocabulary word are both
hidden Markov models. A LR based hypothesis test can
then be defined under the assumptions that the null hy-
pothesis. Ho, corresponds to Y being generated by the tar-
get model A°. and alternative hypothesis. H;, corresponds
to Y being generated by the alternative model A°.

Hq

—log P(Y[X*) 2 7 (1)
M,

log P(Y]X)

where 7 is a decision threshold. Given the target hypothe-
sis probability {Y|A°) which models correctly decoded hy-
potheses for a given recognition unit and the alternate hy-
pothesis probability (Y ]A®) which models the incorrectly
decoded hypotheses, qumtnou 1 describes a test which ac-
cepts or rejects the hypothesis that the observation se-
quence Y corresponds to a legitimate vocabulary word by
comparing the LR to a threshold.

The UV score for a given word, wx. is obtained by
combining the LR scores for the acoustic subword units,
Uk, 1 = J.....Np. that make up that word. The log of
the likelihood ratio given in Fquation ! is computed for

each subword unit using null hypothesis model and alter-
nate hypothesis model probabilities that are defined below.
For all of the simulations described in this paper. the set of
53 acoustic subword IIMMs that were originallv trained for
speech recognition using the forward- badmar(l algorithm
were used for the null hvpothexls model, lhe alter-
nate hypothesis probability for a given subwor(l unit. u,, is
actnally formed as the lincar combination of two different
models

P(}'I’\a())) = n’bgP(Y l Agg) + (Yim | Ann ) (-3)

where apg and a,,n =1 — gy are linear weights.

The purpose of Af, (7). referred to here as the imposter al-
ternate hypothesis model for subword unit w,, is to provide
a description of the speech segments that are frequently de-
coded incorrectly as u;. The purpose of A}, referred to here
as the background alternative modecl. is to provide a broad
representation of the feature space. This broad representa-
tion serves to reduce the dyvnamic range and to reduce the
influence of out liers on the value of the likelihood ratio. A
single one state. 64 mixture background alternate hypoth-
esis model is shared amongst all “target™ HMM models.
The subword level LR scores are combined using a sigmoid
weighting to form word level scores so as to mitigate the
effects of the large dynamic range that is typical of any
likelihood ratio based measure.

The subword unit dependent models. Al (7). are three
state HMM models. Maximum likelihood training of these
models is performed in two steps. First, specch recogni-
tion is performed on a set of development utterances, and
subword units corresponding to inscrtions and deletions are
labeled in the output stream. Second. forward-backward
training of the set of imposter models is performed by up-
dating the conditional expectations for decoded units that
were labeled as false alarms in the hypothesized strings. As
a resnlt, cach subword model A, () is trained to represent
the events that are frequently confused with subword unit
uy.

In previous work on other tasks, both null hypothesis
models and alternative hypothesis models were trained us-
ing a LR criterion which is stmmilar to the LR used in UV.
This modified training criterion resulted in significant im-
provement in utterance verification performance [3. 8]. Ef-
forts are currently under way to train models according to
this new training procedure on this task.

Figure 1 displays an example of where the occurrence
of the hypothesized phrase “calling card” is verified in the
recognition output for the 1000 utterance test corpus in the
call routing task. This example was chosen because of the
high semantic association of the phrase with the “calling
card” call-type in the call routing task and its high fre-
quency of occurrence in the recognized strings for the test
set [1]. It is clear from the figure that the likelihood ratio
based confidence mcasure provides reasonably good detec-
tion characteristics.

4 INTEGRATION INTO LANGUAGE MODEL

Using localized measures of acoustic confidence by them-
selves can be misleading when the effects of linguistic con-
text are significant, as is true in the case of large vocabulary
speech recognition. Stochastic language models for speech
recognition are usually trained from text transcriptions and
thus assume that the speech recognition is error—free. The
goal here is to exploit acoustic confidence measures derived
from the actual speech utterance to account for an imper-
fect decoder.

Our approach to integrating acoustic level confidence with
the language model is to augment the Ngram word histo-
ries. which currently define linguistic context, with encoded
values of acoustic confidence. A statistical language model




a) LR Based Contidence Measures for "Calling Card"
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Figure 1: «) Histogram of LR based confidence scores
obtained for correcctly and incorrectly decoded occur-
rences of the phrase “calling card™ in the 1000 utter-
ance test corpus (210 total occurrences). b) A recciver
operating curve plotted over the confidence measures
obtained for “calling card™.

is generally defined over the elements of a K length word se-
quence, wy, ..., ws, for an utterance where w, € V', and V
is the lexicon for the task. The word string can be replaced
by a symbol-pair sequence an utterance is represented by
(wi.c1). (wa.e2). .. .. (wi.cn). where, ¢; € [0..... Q -1).
is a discrete, Q level encoding of the acoustic confidence
for word w,. Hence, the linguistic context for word w; in a
third order statistical Ngram language model would be aug-
mented from {w,_y, wi—2} to {{wi~1,ci—1), (wiz2.c:—2)}.

The obvious advantage of this scheme is to reduce the
probability that an inserted or substituted word u in the
recognition output will result in additional errors. A very
high observed co-occurrence of this word with another word
v in the text training corpus may resuit in the word bigram
probability P(w; = v|w,—1 = u) being very high. However,
the word context could also be conditioned on. for example,
a binary random variable representing acoustic confidence.
As a result. P(w, = v|w,—1 = u,ci-y = 0), corresponding
to the case when there is low acoustic confidence at word
wi—1 = u might be much lower than P(w, = v|wi_; =
u.c,—; = 1) corresponding to high acoustic confidence.

Of course, these probabilities must be estimated from a
limited corpus of acoustic training utterances, which is gen-
erally over an order of magnitude smaller than the text cor-
pus for training langunage models. With this small amount
of data for training, the issue of dealing with the robustness
of these acoustic confidence conditioned (ACC) probability
estimates becomes critical. Our approach in the paper is to
deal with this issuc in a manner similar to that used in esti-
mating language model probabilities. When an Ngram con-
text occurs infrequently or not at all with a given acoustic
confidence level in the acoustic training data, one of many
possible back-off mechanisms may be invoked [7].

The automatic learning of finite state antomata that
incorporate ACC probabilities fits very nicely under the
frame- work of the VNSA [7]. As described above, the no-
tion of a state in the VNSA can be expanded to include
encoded acoustic confidence measures along with word his-
tory. 'T'he notion of backing off to null states need not cor-
respond strictly to proceeding from higher order to lower
order Ngram contexts, but can also be invoked to deal with
lack of statistical robustness in the estimation of ACC prob-

abilitics.

The following procedure has been investigated for train-
ing a stochastic language model that incorporates acoustic
confidence:

1. Estimate word level UV scores for words in training-
development data sets (4317 utterances).

2. Quantize UV scores into @Q levels (@ = 2).
3. Estimate ACC word counts from data.

4. Learn VNSA state transition function and probabilitics
from word and quantized UV score sequences [7].

5. Prune states in VNSA network [7].

Using this algorithm, the stochastic finite state machine
can be learned from two independent information sources:
the lexical word sequence and the sequence of quantized
acoustic scores. The stochastic transducer is designed by
associating with each speech input utterance a sequence
of word/symbol pairs (w.,c,). We have incorporated this
class of stochastic transducers in the W ATSON AT&T
large vocabulary recognizer and tested on the 1000 ut-
terance test set. The output produced by the recognizer
is a hypothesized string of word/symbol pairs. provid-
ing an indication of the confidence associated with cach
word. An excerpt from this experiment is shown below:

ASR I'm/0 dialing/0 use/l my/1 credit/1 card/|

REF | wanna use my credit card

ASR ves/1 I'm/0 trying/1 the/0 calling/1 card/1 call/1
REF yes I'm trying to make a calling card call

ASR hi/0 I'm/0 calling/0 the/0 number/1

REF hi 'm having trouble getting through to the number

where for cach transcribed (REF) sentence is given the de-
coded (ASR) sequence of word-quantized-confidence-score
pairs. The value of the quantized confidence score predicts
the confidence on the decoded word. The recognition accu-
racy improved only slightly from 45% to 46.5%. Howevcr. it
is very interesting to note that the decoded confidence level
obtained during recognition provides a good indication as
to whether or not a given word was correctly decoded.

5 UV IN CALL-TYPE CLASSIFICATION

Spoken utterances are classified as to call-type by recog-
nizing and spotting the occurrences of salient events within
them. Previously we have used salient phrase fragments
for classification [1]. More recently we use grammar frag-
ments {10] that can be regarded as clusters of semantically
sitnilar phrases, with a single posterior distribution over the
call-types. These fragments have good coverage of the task
and reasonably robust statistics, and tend to be less am-
biguous than individual words. Moreover they can contain
embedded nonterminal symbols representing salicnt data
within the sentence, such as a telephone or calling-card
number, which can be of value in determining the call-
tvpe. The grammar fragments are automatically acquired
from transcribed and labeled training data. Fach grammar
fragment is represented as a finite-state machine, and a suc-
cessful match of a path through the finite state machine to a
substring of the utterance generates a detection from which
call-type classification can follow.

In general there may be multiple occurrences of salient
fragments within an utterance. and occurrences may also
overlap. First, a conlidence score is associated with each oc-
currence. given by the geometric mean of confidence scores



for the individual words in the phrase. The posterior dis-
tribution over the call-types is then scaled by this mean
confidence score. For each call -type, the lattice of detec-
tions i« then parsed to find the highest cumulative scaled
posterior probability along a path through non-overlapping
detections. These totals are then passed through a simple
feed-forward neural network in order to generate an ontput
for cach call- tvpe in the range (ﬂ 'I\ whic iterpret as a
set of pr()babllltles. The network is trained using the tran-
scribed and labeled training data from which the fragments

In the call routing task, one of the 13 call types is called
“other” and the intention is that these calls be transferred
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the decision for that rank is “other™ or if the score for that
rank is below a given threshold. By varying the threshold
we can generaie ROC curves of the type shown in Figure 2
which displays the percentage of utterances in the 1000 ut-
terance test set that were correctly classified according to
call--type versus the percentage of utterances that were in-
correctly rejected by the system. It should be noted that
the systems represented by the curves in Figure 2 do not
perform as well as the best performing system described
in [10]. These differences arc attributable to several factors
including the fact that both a lower complexity language
model and a lower complexity acoustic HMM model are
uscd here. By comparing the solid curves, labeled “base-
line+UV”, with the dashed “baseline”™ curves. it is clear
that incorporating UV in call-type classification results in
a significant improvement in performance.
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Figure 2: Receiver operating characteristic curves de-
scribing the effect of UV on the call-type classification
performance for the HMIHY task. The solid curves cor-
responds to the case where UV scores are integrated inio
SLU. and the dashed curves correspond to the real -time
baseline system implemented without UV.

6 SUMMARY AND CONCLUSIONS

This paper makes three maior contributic

jox: 1ajor co uLlo

19 to the ¢ -
3 Lo the gen

eral problem of continnous speech recognition from un-
constrained speech utterances. The first contribution is

a demonstration of the fact that IV technigues based on
a gemonstirauion ol tage jact that UV otecanigues daseu on

acoustic modeling procedures can by themselves help to de-
tect words hypot hesized by the speech rec ognizer that were
COITec l}_\ \IIC\.UL}('l{ 'l‘llc \C\,l)lll{ LUlllllk‘llbl\}ll is a \l(l,l.l5l;l'
cally robust method for integrating acoustically derived UV

measures with stochastic language models. Finally, a third

contribution is the demonstration of how spoken language
understanding performance can be improved when acous-
tic UV measures are integrated into the SLU. Call tyvpe
classification error was reduced by as much as 23 percent
when utterance verification was used over an equivalent svs-
tem that did not incorporate UV. The implementation of
the techniques and the experimental resnlts presented here
represent a first attempt at developing formalisms that re-
sult in more closely coupl(,d acoustic, ngua;.,v and scman-
tic modeling components of spoken language understanding
. "
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