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ADSTRACT 

Methods for utterance verification (UV) and their 
integration into statistical languagy: modeling ad 

spoken language understanding formalisms for a 
large vocabulary spoken understanding systc?m are 
presented. The paper consists of throc parts. First. 
a set of aconatic likelihood ratio based utterance 
verification techniques are described alld applied 
t,o the problem of rejecting portions of a hypoth- 
esized word string that may have hotm incorrectly 
decoded by a large vocabulary cont,inuous speech 
recognizor. Second, a procedure fnr integrating the 
acoustic level confidence measures with the statisti- 
cal language model is described. Finally, the effect 
of integratmg aconstic lt~el confitlcnce into the spo- 
ken language understanding unit (SLU) in a call- 
type classification task is discussod. These tech- 
niques were evaluated OII ntterancos collected from 
a highly unconstrained call routing task performed 
over the telephone network. They have bcon evalu- 
ated in terms of their ability to classify iitterancos 
into a set of fifteen semantic actions corresponding 
to call-types that arc ilcCa?pt6?d by the applicatioil. 

1 INTRODUCTION 

In 1 his paper, utterance vcrilication tc:ctrniclues iIR! applied 
to arr automated call rout.irrg task [I, 61. Thcs distinguistr- 
ing aspect of this t,ask is t.trat it. att.crrrpts to dttrivc a small 
number of semarrt.ic actions from ut.t.c:rances spoken by users 
who may have lit t.le or no knowledge of the limit,at ions of t hc* 
systcrrr. It is oftcrr the case that the uttcrarrces that are prr- 
sentctl to the syst,c:rrr have no relevance at all to t hr domain 
in question. contain words or phrases t,hat are not legitirrrate 
vocabulary words. or were not correctly rc:cognized by the 
.iSR component. of the system. ‘[‘he call routing task and 
the characteristics of the utterarrccs derived front thr task 
arc: briefly tIcscriber in Section 2. 

lt is oft.en the: case that. human-rrrachine intrrfaces arc 
configrrrc*d so t,hat a large pc~rcc*rrt.age of t hc: input. II~ terances 
are iii-forrrrc:d. This is the casr: for user-initiated hurrran- 
rrrachine dialog [ll. A], aiitomatiorr of teleconirrinnicalioris 
services [9]. arid is certainly true in case for machine inter- 
pretation of human human dialog [2. 81. Ii tterancr vcrifica- 
tion in this context implies the abilit\; to drstcct legit.irrrate 
vocabiilary words in an utterance that is assurric~d to corr- 
t.ain words or phrases which art: not explicitly mod&d in 
the speech rccognizer. Ilowever! evc:r~ when input ut.terarrctas 
tend I.0 be well- forrned and cont.ain relatively few out-of-- 
vocabulary (OOV) words, I.V techniques can be appliecl 
to det.ermrrrca when decoded word trypot hescs are corrt:ct,. 
l’hc*se procs*tlrr rcs have bc:c:n shown to improves pr:rformarrce 
in a number of applications where OOV utterarrct:s are rc:l- 
at,ivc*ty rare including teltsphone basctl connected digit arid 

c~orrimand word recogriit ion [.?I. 
I\ set of ac.oust.ic likr~litroocl ratio ( l,li) basc,tl confitl(~r~c:c 

mr‘ahrrres for 1‘\’ are dcfiric*d in Scctiori :I. arid prc~liminary 
I.:V results for t hcse mc’aSrrrc,s on t Ir(s call routing task arc: 
described. Thcsc rrreaSnrc:S are similar to a set of tcctrniqur~ 
that w(*rc’ devetopc~d and applied to il ‘.rrrovie locator” di- 
alog task [;3]. E:a.ctr hypot hc+ed word or phrase obtained 
froth t.hc: :iSR dccotler is associated wit.h a confidrncc: mea- 
sure and passed along to t hc: natural language back t:nd t,o 
weight tlcc-isions in ASsifyirrg utterances according to call. 
type. 

;\ mechanism bv which acotrst.ic and linguistic informa- 
tion carp be corrrt,i;red through incorporatir;g t trca not.ion of 
acoustic confidence in a stochastic automatLri (SX) is tlis- 
ci~ss~~d in Sect.iorr 4. Ttrc:re are a number of cxamplrs of 
confid(srrce measures that irrcorporatc bot.h acoustic and lark- 
guagc: level scores [4]. ‘I‘hc: approach I hat is considered trc,rc: 
attcrrrpts to cxtcr~d thr not.ion of a st.ochast.ic: atrtomatorr 
which is cirrrc:rit.t~ usctl bo descri bc an S--gram language 
model for spc:ccti recognition [T]. III t.he sirriplest cast. a 
stat.e in a 5:i may corrcspontl to a word context for some 
word II’, . arid the wctigtit on an arc extending from I.tic state 
would corrtrspond to the probability of producing rrJ2 given 
the previous st.ate. ‘I‘trere arc a number of ways in which 
acoustic confidence could be incorporated into this frame- 
work. In Section 4. we investigate a met hod whcrc the 
tlr:lirrit,ion of a state in the language: rnodel carr be expanded 
to include not. only the word context but also a discrete. 
cotlrd represc:rrtat,ion of the acoirstic confidt:ncc obt.airrcd for 
the: word history. Ry including arr additional state variable 
corresponding to acoustic confitlcrrce we thcrcby expand t,he 
Stiltr! space of I he associat.ed S.4. 

(‘lassificatiorr of spokcrr utteranccts into a Small numbc:r of 
semantic cat~egorics by t hc: fi;Lli invotvtss searching t,hrorrgh 
a lattice of grarrrrrrar fragments that have bcctrr ext,rac:t cd 
from t tic: input. spc:ech. SWI ion 5 describes how word lr~:I 
acoustic corrficlencc scores arc’ used in t ht: process of obtairr- 
irrg the a posteriori probahilitics t,hat arc: assoc:iatc*d with 
t ticse grammar fragnicrits. 

2 AUTOMATED CALL ROUTING TASK 

‘l‘he utterances used for the experiment al study tlr*scribetl 
in this paper were takcrr from spoken transactions bct.ween 
customers and human t&phone Opc*rators 0vt.r t.lie pir blic 
switched t&phone network. .I‘he utterances corrc:>poncl t.o 
customers responses IO t.he open+rrded prompt “How rrray I 
help you?” [G]. ‘l’hc: first ut tcsrance from the customer in this 
I rarrsact,iorr was t.rarrscribed and labeled according to one of 
fiftccrr call-types. The call--t.ypes themselves correspond to 
a set of actions rctlating to I trc: rout.ing of the irrc.orning call. 
t*:xarnples of these Cilll-t,vl)r!S include colltct. crrllirly Cfl,rl. 
arid !hir~i pc~rly billin!). with arr iltlditional”r)~/rc ).” type to 
harrtlle calls that do not correspond to those that have: been 
tlefirrcd. A set of 224:1 utterances were used for training sub- 



word acoust,ic: acoust.ic: hidden 5larkov mod& (Hkl hl). and 
a wt ol’ 1000 uttcranws were uh(:d as a test set,. ‘I’hc: utter- 
ant-ct$ were an average of 5.3 s~onds in duration. with t.he 
longest llt.t,~:riltlc:e being 52.i seconds. ‘I‘hc*rcA is an ilvc'rilge 
of nittcteen words per ttt.t.c:rance with an out of--vocabulii;y 
rare in the rest (lilt.& at t hc* utterattcc* lrvel of 1hirt.v percctnt. 
‘I‘he beht :\SR p<,rfortnancct on this t.t:st set ttsing contrtxt 
tl(~pc~ttdent acottst.ic tttodels and a variablrb phranc N-gram 
sto<hilstiC automaton (V.\S.A) latlguage model is tX:lilti\~ely 
low (a~~~~roxintiltc:l\~ 35 - fi0 percent word accttri1c.v) [6]. Icur- 
thertnorc. the t)ascs line pcrf0rmattc.c on this test set for a 
rc:a-tinic system t hilt was trsc:d in 1 hcse experitttettts is al)- 
proximatcsly 4.5 perccttt word accuracy. 

3 ACOUSTIC MEASUR.ES FOR. UTTERANCE 
VERIFICATION 

‘rhis section prc:sc:ttts a likclihootl ratio (LK) based procc- 
(lure for gctterating word Irvcl acoustic confidettcc: measures. 
First. t hc: U\T problem is presented in a hvpot,hesis tcst- 
ittg framework.. Sttc~ntl. thk form of t hc de&it ic*s used in 
t hcs LR based hvnothcsis test for U\. is described and the 
mcst hods usc~i fdr’traittittg the tttodel parameters associated 
with rhese dertsit.ies is present cad. Finally. a simple IIOW 

pa.ratttet,ric approach is presented for convcsrting thcsc: LR. 
scores to a posteriori probabilit.ies for IIW in the SLII sys- 
rc!ltl. 

It is assumed that the input. to the speech recognizer is a 
sequence of featurr vectors 1’ = {Y;. !jJ. . . . . $T} rttprcsetititig 
a speech ut.terancc containing both witttitt-vocat)ttlar~ and 
out-of vocabulary words. ‘i’he within-vocahttli~r~ words 
will bcs referred to here as belonging ro t.he ClilSS of “t,ar- 
get.” hypotheses and t,he ollt.-of-rocabularr words will be 
rrfrrrcd to as “ittiposters” or belonging to tftc> class of al- 
ternatc: hypot hc5ex. Incorrcctlp dc:c:oded vocabulary words 
appearing as substituf.iotts or insrrtions in t hc out put staring 
f611 the‘rcc.ogttizer will also be referred t,o as tA&gittg t.0 
t fte class of alt.ernatc hvoothesrs. It. is also assumed that the . . 
output of the recognizcr is a single ICYA string hypolhesis 
W = tt!t. . . . (1’1< of Icttgth I<. Of course. all the ;fiscttssiott in 
this sect.ion can be easily generalized t.o t hc: problems of ver- 

I l., 

ifying one of multiple complete or part,ial st’rittg hypotheses 
produced as part of an N-best list or word lattice as well. 

17nder tftc: assumpt.iotts of t hc: Neyman I’carson hyl)otft- 
esis test.ing framework. both the target, hypothesis and al- 
ternat,e hypothesis dcttsit.ies arc assumed to be known. In 
the cont,oxt. of I.-V: it will be assutned that the target or 
correct hvrjothesis model A’ and the alt<srttate moticl X” 
correspolld’ing to a hypothesized vocabulary word are both 
hidden Markov models. A LR based hypot,hrsis test cati 
t hctt be defined under t hc: assumpt,ions t.hat, the null hy- 
potftcAs. ‘Ho. corresponds to Y being generated by the tar- 
get ntod~l A’. and alternativr hypot hrsis. ‘)iH1( corresponds 
to 1’ bcittg generatc:d by the alt.ernativc: tttodel A”. 

where r is a decision threshold. (liven the target, hypothe- 
sis probability P( YIX”) which models correctly tlccoded hy- 
pot hrsc:s for a givc:tt recognil ion unit and the alternate hy- 
pothesis probability I’( Y]X”) whicft moclels the incorrectly 
drcoded hypot.hc:ses, Equation 1 describes a t.est. which ac- 
cepts or reject,s t ht~ hypothesis that, the observation se- 
quence Y corresponds 1.0 a legitimate vocabulary word by 
comparing the I, H t.o a thrctsftold. 

J‘hc: I;\; score for a given word. ~1;. is ohrained by 
comhittittg the Lli scores- for the acoustic subword units. 
uk.,. i = 1.. . :vk. that. make II~ that. word. The log of 
the likelihood ratio given in f.:quation I is computed for 

each sit bword unit using nttll hypot.hesis tnodef and alttbr- 
nate hvr)ot hesis tttodel orohabilities that arc definctl Mow. 
l:or all’ of the simttlat.iot;s described in this paper. thr *.c:t of 
53 acoustic: subwortl II hlMs that were originally trainA for 
speech rt!cognition using the forwilrcl-bac.k~vvartl algorit.httt 
w(*re used for the null hypothesis tnodel. A”. The all(:r- 
nat(! hypothesis probabili1.y for a givctt subwortl unit. u,. is 
actnallv formctl as the linear cort~bini~~iott of two tlilfcrrnt 
ttiodel; 

whcrc: oby and ~t~,,~ = 1 - 01 ,!, are littc*ar weight,s. 
J‘hc purpose of X:,,,(j). rctfc:rred t,o hcrc: as the itnpostc:r al- 

ternatc hypothesis tttodel for subword unit u,. is t.o provide 
a description of t hc: speech segtttcttts that arcs frequent1.v tic- 
coded incorrectly as 11~. The purpose of A&- rc:fcrrecl to Itc:re 
as the background altctrttat.ive model. is to provitle a broatl 
representation of the fctature space. This broad rcpresenta- 
t ion serves t.0 reduce t hr dynamic range: and to rctluce t fte 
inflttcnce of out liers on t bra value of t hc: likelihood ratio. A 
single one st,atc:. 64 mixture background alt,ernat,c hyl)oth- 
esis 11todc1 is shared amongst all “target” HM%I rttodels. 
The SII bword levc:l I. R scores arc combined using a sigmoid 
weighting t.o form word lercl scores so as t.o mit,igat.c: t.he 
effects of t.he large: dvnamic range that is tvpical of an\ 
likelihood ratio b&d‘measurc:. -. 

_ _ 

Thr subword unit denendcnt. mod&. Aft... ( i). arc three 
st a1.c: llhf Ai mod&. M~xitttttnt likelihood iraiftittg of t.hcsc: 
niotl~:ls is performed in two st.eps. First,. sprcch recogni- 
t,iott is perfortttcd on a set of development. ttt (c*rattces. atttl 
subword units correspontlittg to inscrtiotis and dclct.ions arc> 
lab&d in t hex output St ream. Second. forward---backwartl 
training of the set. of itttposter ntodcls is prrforttted by ~tp- 
dating thr! conditional cxpect,atiotts for decod~i units I hat 
were lab&d as false alarms in the t!ypothrsiztrrl strings. 21s 
a resttlt.. each subword model A:,,, (J) is trained to rcprcscnt 
the evrnts that. arc* frequently confused with subword unit, 
‘J. 

In previous work on ot,her tasks. hot h null hypothesis 
models and alternative hy.pot he& motlcls were traittcd us- 
ing a I, R criterion which IS sitttilar to t hc: LR used in UV. 
‘l-his modified training criterion resulted in significant im- 
provemcnt. in utterance verification performance [3. 81. Ef- 
forts arc! c:urrent,ly tinder way to train mod~~ls according to 
this new training procedure on this t.ask. 

Figure I displays an example of where: the occurrence 
of the hypothesized phrase “calling card” is verified in the 
recognition output for 1 he 1lMl ut.tc:rance trht corpus in the 
call routing task. This cxatnple was chosen bc~cause of the 
high semantic association of the phrase with the “crrllirty 
cur# call-types in the call routing task and its high frc- 
quettcy of 0~~1trr~:nce in I hc: recognized st.rings for the rest 
set [I]. It is clear from t.hc: figure that the likelihood ratio 
based cot~fidence tttr:asure provides reasonably good det.ec- 
tion characteristics. 

4 INTEGR.ATION INTO LANGUAGE MODEL 

Using localized measures of acoustic confidence by tftem- 
s;clves can be misfeadinr when t.he effects of linauistic con- 
text are significant. as ik’t rue in t.hr case of fargc: vocabttlar! 
speech recognit.ion Stochastic language: models for speech 
recognition are usually t.rainecl from text t,ranscript ions and 
thus assume that the spc~:c:h recognition is error--free. ‘I’he 
goal here is to exploit acous1ic confidence meajnres derived 
from the actual speech utterancr to account for an itttper- 
feet decoder. 
Our approach to itttegrat,ittg acoustic Icvel confitltsnce wit.h 
the language modc:l is t,o augment the Sgram word hist,o- 
ries. which currently define linguistic cotttc*xt.. wit,h c:ttcodetl 
values of acoustic confidence. X stat.istical language: model 



a) LR Based Conhdence Measures for ‘Calhng Card’ abili t ic,s. 
Thr following procedurr has been invcstigatetl for train- 

ing a stc~tiast~ic language mociel t.hat inc.orporatf:s ac.oustic 
co&lt~Ilc~c!: 

0.1 0.2 0.3 0.4 0.5 06 0.7 0.6 0.9 
confidence measure 

b) ROC of Confidence Measures for ‘Calhng Card 

Estimatt* word Ictvel II\. score’s for worcls in training- 
developrnc~nt. dat.il scats (4;31 7 11 t tc,ra.nces). 

Quantize I.\. scores into (2 levels (Q = 2). 

Est,imatc~ XC:C word counts from dat.a. 

0 

#, ,/ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1 
prob of false alarm 

I. 

2. 

3. 

4. 

5. 

Learn ieNS: stalca transit,ion function ancl probahilit ic*s 
from word and quanl izecl I.-\: sc:orc seqricuc.c*s [7]. 

Prune stat.es in vNS,\ nc:t.work [i’]. 

Figure 1: u,J Histogram of LR based conficlencc? scores 
obtained for correctly and inc:orrect,ly dc!cocIed occur- 
rences of the phrase “calling card” in the 1000 utter- 
ance test corpus (210 total occurrences). b) A receiver 
operating curve plotted over the confidence rnctasures 
obtained for **calling card”. 

is gctnc:rally defined over the: elements of il li length word se- 
q~~t:ric:c. tc’, 1 . . , II’I~. for an utterance where u*) E v, and b’ 
is t hc: lexicon for the task. ‘l‘he word string can bc replacrcl 
by a symbol-pair sec~nc~~c:e an utterance: is reprctsented h? 
(II*I.cI).(II~~.c.J) . . . . . (wI~.cI<). where:, C, E [II . . . . . Q-l]. 
is a discrete. C) level encoding of 1 hc: acoustic: c:onfidenc:c 
for word We. Ilence. tho linguist,ic context for word ZI:, in a 
third order stat.istical Sgram language model would be aug- 
mented from (~~-1~ ~-2) to {( ~,-1.c,-l), (~~-2. cl-x)}. 

I,‘sing this aIgorit,hm. the 61oc.tiast.ic finite state machine: 
<ran be learnctcl from two indepenclcnt informarion sourc‘c’s: 
t hc lexical word sequericcs and the: scquencr or quantizrd 
acoiisbic scorch. ‘l%e stochastic t ransclucer is clc5igned b> 
assoc:iating with ca.ch spc:c*ch input ii1 trrance a sequence 
of worcl/s~mhOl pairs (IL’,: cI). \\-e havr incorporatc~cl this 
class of stochastic: transcluccrs in the Ct’ATS0.V .vl‘&T 
large vocabulary rc*cognizrr and testecl OII the IOOO ut- 
terance test. set. The output produced by the recognizer 
is a hy~)othesizccl string of word/symbol pairs. provicl- 
ing an indication ol the confidence associated with cxach 
w&d. :\n excerpt from this experiment is shown brlow: 

ASR I’m/O dialing/O use’/ I my/l crc:clit/l carcl/ I 

REF 1 wanna IISC my credit card 

ASR yes/l I’m/O trying/ I the/O c:alling/l card/l call/l 

R.EF yes I’m trying to make a calling card call 

ASR hi/O I’m/O calling/O the/O number/l 

The obvious advant.age of t.his scheme is to reclucxt t.he 
probability that an inserted or subst.itut.4 word IL in t.he 
recognition output will result in additional c’rrors. .A very 
high~ohservc:cl co-occurrence of this word with another word 
‘1’ in t.he text training corpus may result. in the word bigraIn 
probability I’( cc’, = t*luvl- 1 = u) bcsing very high. However. 
t.he word c:ont.ext could also be conditioned on. for example, 
il binary random variable representing acoustic confidenc~c:. 
As a result. I’( ~1, = I*~w,-I = u. ~~-1 = 0): corresponcling 
t.o the case when there is low acoustic: confidence: at word 
~-1 = 11 might be much lower t.han /‘(II! , = ?‘1Ui,-1 = 
tf. c,-~ = 1) corresponding to high acoustic: confidence. 

REF hi I’m having (.rouble grt.ting through to the number 

where for c~ac:h transcribed (R.EF) sentence is given the: cle- 
c.odecl (ASR) secluencc of word-quantizecl-confidence-score 
pairs. The value of t hc quantized confidence: score prcclicts 
t tic: conficlcncc~ on t,he clc~codecl word. The rc:c.ognition accu- 
racy improved only slight1.v from 45% to 46.5%. How<tvc’r. it 
is vefy intcrcsting to note that t hc decoded c.onfidencc Ic:vel 
obtamecl during recognition provides a good iudicat ion as 
to whether or not a givc*n word was corrkctly clecoclccl. 

5 UV IN CALL--TYPE CLASSIFICATION 

Of course. these probabilities must bc: cstimatc:cl from a 
limitc*ci corpus of acoustic training utterances! which is gen- 
erally over an orclcr of magnitude smaller than the t,ext cor- 
pus for training language ~moclc4s. ivit.h t.his small amount 
of data for training, thr issue of cl(:aling with the: robustness 
of these acoustic conficlcsnce condit.ic&d (X(X) probability 
estimates becomes critical. Our apprcx1c.h in the paper is to 
deal with this issue in a manner similar 1.0 that usecl in esti- 
mating language model probabilities. When an Ngram con- 
text o&urs infrequently or not, at all with a givc:r; acoustic: 
confidence levc:l in the acoustic training data: one: of many 
possible back-off mechanisms map be invoked [T]. 

The automatic learning of fir1it.c stat,e aulomata that. 
inc.orporat,e XCC probabilities fits very nicely ~~ncler t.he 
frame- work of the VNSX [7]. A. s c escribed above! t hc no- I 
tion of a state in the \‘NS.-\ can bet expanded to incluclc: 
encoded acous(ic confidence: measures along with word his- 
tory. ‘l‘he notion of backing off to null st.a(cs need not cor- 
respond st.rictly (0 proceecling from higher order to lower 
order Ngram contcaxts. but can also be invoW to deal wit.h 
lack of statistical robustness in t,he estimation of XC‘C prob- 

Spoken utterancc>s are classified as to call-type: by recog- 
nizing and spotting the occurrences of salient events within 
them. Previously we have: used salient phrasct I’ragments 
for classificat,ion [I]. llore rc:c:ently wc: use grammar frag- 
ment,s [IO] that can bc: regarclc~cl as cIustc:rs of semantically 
similar phrases. with a single post.csrior clistribution ovcsr the 
call -types. .l’hcse fragments have good covctrage of the: task 
and rcasonablv robust statistics. and tend to t)c less a~- 
biguous than ~ndiviclual words. \Ioreovc,r they cau contain 
c:mbeddccl nonterminal symbols represent.ing salient. data 
within the sc>ntence, such as a t&phone or calling-card 
numbc:r. which can be of value in determining the call 
type. ‘I’hc grammar fragments are automatically ac:qllirecl 
from t,ranscribecl and laMed training c1at.a. Kach grammar 
fragment is reprcssented as a finite-stat<, machinca, a;ld a SIIC- 
cesiful match of a pi1t.h through the finite state machine to a 
eubs;tring of the utterance: generatcts a detection from which 
call--l?:I)e classi fic.ation can follow. 

In gcncral t.herr may be multiple occ:urrenc(%h of salient. 
fragments within an ut.teranc.e. and occurrences mar also 
overlap. l‘irst, a conliclence sc‘orc‘ is associated wit II f:ach oc- 
c:urrence. given bv thct geometric: mean of c:ontidenc:c* scores 



for t.hc indivitlnal words in the phraw. ‘I’he posterior dis- 
t ribut ion over l.hc: call-types is theli scaled by I his mean 
CO~~~~ICIIW SCOW. For each (.idl -ty,pe. t hc lattIc(: of detec- 

Cons iq then parwtl t,o find thus highest c~~rnulat ivc sca.letl 
posterior probability along a piit h through [Ion-ovrrlill)ping 
tl(btections. ‘These totals are thtsn passed through a simple 
fwtl-forward neural net,work in ortlcr t.0 generatb an out put. 
for CilCtl call-tvpc in the range: (0.1). which we interpret. as ii 
set of probabiiitiw. The net.work is trainA using the: tran- 
scribed ilIlt labeled training diltil from which the fragments 
arc acquirctl. 

III the call routing til?;k. one of the: 15 call t.vpes is c.alletl 
“01hf.r” and the int,ention is t,hat t ticw calls bc: transfcrrcd 
imrric~diately to a human ilgC?Ilt. l’hcsre is thcwfore a cri- 
t.eriori for rejection and w: CilIl measure t.he true illld f&c: 
rejection rates for a labeled twt set.. as wc~ll as the t.ruc clas- 
sification rate. Xt each rank. a call is ‘.rc!,ic:cted” tither if 
the decision for t.hat rank is “othc~r:’ or if t hc: score for that 
rank is below a given threshold. 1%~ varying the threshold 
WV CMI generate ROC r‘llrves of the tye shown in Fignrc 2 
which displays the percentage of utt.c~rances in t hc: lO~l0 ut- 
teranw test set t.hat were correctly c.lilssified according to 
call--type versus t.he percentage of ut,t,t‘rances that were in- 
correctly reject.cd by the s\;st,c:rrI. It. shollld be not.cd that 
the systems reprcscnted by the cwves in Figure 2 do not. 
perform as well as t.he best pcarfortning syst,em dcscrihed 
in [LO]. ‘I’hese differences arc attributabh: to several factors 
including the fact that both a lower complexity language 
model and a lower comp1cxit.y acollstic HMM 1notle1 arc: 
IISCYI here. 13~ comparing the solitl curves. lab&d “base:- 
linc*+I.;V”. wit.h the dashed ‘.basrlinc:” curves. it is &tar 
t,hat incorporating I.-\‘ in call-typct classification results in 
a significant improvemc:nt in performance. 
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Figure 2: Receiver operating characteristic curves de- 
scribing the effect of UV on the call-type? classification 
performance for the HMIHY task. The solid cnrves cor- 
responds to the case where UV scores are integrated into 
SLU. and the dashed curves correspond to the real -time 
baseline system implemented without. UV. 

6 SUMMARY AND CONCLUSIONS 

This paper makes t.hrc:e major cont.ributiows to t,he gc:r~- 
era1 problem of cont,inllous speech rwognition from un- 
constrained speech iit terances. The first contribut.ion is 
a demonst.rat,ion of the fact that liV techniquw based OII 
acollstic modeling procednrcs can by t hcrnselves help to de- 
tect words h!;pot hesized by t,hc: speech rcwgnizer that were 
correctly decoded. ‘[‘lie second contribution is a statisti- 
cally robust method for integrat,ing acoustically deriwtl I..\; 
measnres with stochastic language: models. Finally. a third 

cant ribution is the tl(:nlonst.ratiorl of how .*poken langllagr 
und~:rstantlirig performance can bc iniprowtl when il~‘OllS- 

tic- I:\’ 1tl(‘il1?3llW5 arc: intc~gratecl int.0 t.he SI,II. Call type 
cla?;hilication error wyas wdiiced I)? il5 much ilS 23 perwrit 
when ut teranw vcrificat.ion was uaetl o\ (sr an cyllivalent sy+ 
tern t Ili1.t did not incorporilt(: 1-i.. .I’hc: implrnic~nt ation of 
t lie techniques and the expcrirnt~rital rt~siilts prewntc~tl hew 
wpwsetit. a lirst. at Icmpt at rlcwloping f0rnlillisttls t hilt re- 
sult in mow closely couplctl a.coust.ic:. Ianguagc. and M!lllilIl- 

tic modeling components of spoken language nntlcrstantling 
S\‘St~clll4. . . 
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