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ABSTRACT 

This paper deals with modulation classification, First, a 
state of the art is given which is separated into two classes: 
the pattern recognition approach and the Maximum 
Likelihood (ML) approach. Then we propose a new classifier 
called the General Maximum Likelihood Classilier (GMLC) 
based on an approximation of the likelihood function. We 
derive equations of this classifier in the case of linear 
modulation and apply them to the M PSK / M’ PSK problem. 
We show that the new tests are a generalisation of the 
previous ones using ML approach, and don’t need any 
restriction on the baseband pulse. Moreover the GMLC 
provides a theoretical foundation for many empirical 
classification systems including those systems that exploit 
cyclostationary property of modulated signals. 

1 - INTRODUCTION 

In this paper, we address the problem of digital modulation 
classification. Classically, one can consider two main 
approaches: the Pattern Recognition (PR) approach and the 
Maximum Likelihood (ML) approach. In the first one some 
statistical representations of the signal or of some of its 
parameters are extracted from the observed signal and used as 
discrimating features. In the ML approach, quasi-optimal rules 
are derived from the development of the average log- 
likelihood function of the signal. However, these 
developments [4] are only valid for baseband pulse of 
duration equal to the symbol period. 

In this paper, we present the General Maximum Likelihood 
Classifier (GMLC) based on a new ML approximation. In . 
application to modulation classification, this classifier 
applies to any baseband pulse and particularly no restriction 
on the duration is needed. This approach provide new tests 
which are generalisation of the ones given in [4] for linear 
modulation classification. Moreover, it gives a theoretical ML 
framework to higher-order cyclic moment and cumulant based 
classifiers such as the General Search Algorithm presented in 
[38-401. 

This paper is organised as follow. In part 2, we present a 
state of the art of linear modulation classification. In part 3, we 
present the GMLC and its application to linear modulation 
classification where the MPSWM’PSK case is detailed. A 
conclusion is given in part 4. 

2-STATEOFTHEART 

2.1- The Pattern Recognition approach 
In the PR approach, two main classes can be separated, 

since they use statistics of e?itracted parameters or statistics of 
signal itself. 

In the first class, the extracted parameters arc conveniently 
chosen as the parameters supporting the symbol information 
and the discriminating features are some approximation of 
their density function. For PSK signals, the phase density 
function has been approximated by histogram in ]7-9], by 
histogram of the difference of two consecutive phase measured 
at synchronous time in [lo-141, and by statistical (higher 
order) moments in [15-241. For QAM and ASK signal, the 
density of the modulus of the signal has been approximated by 
histogram in [7-8,14,19,22-231 and higher order moments in 
[ 10,24-261. 

In the second class, the discriminating features are statistics 
of the signal itself or its constellation representation (after 
symbol period and synchronisation estimation). 

In [27-311 the constellation classification is addressed. In 
[27-291 the first maximum or the first zero of the characteristic 
function of the constellation indicates the number of states in 
QAM constellations. In [30], the measurement of the 
Hellinguer distance between the density function of any two 
constellations is used. In [3lJ, a cluster analysis is applied on 
the observed constellation in addition to 4th order 
cumulants. 

In [32-331, a discriminating features is composed as a 
combination of fourth and second order moments of the 
“stationarized” signal (which leads to a fourth order cumulant 
in [32]). 

In [34-431, explicit exploitation of the cyclostationarity of 
the signal are proposed (see [34,44] for a good introduction 
to the cyclostationary theory and link with the Wigner-Ville 
time frequency representation [43]). First classifiers operate in 
the frequency domain. In 1351, cycle spectral moment functions 
of order two is used in a correlation based approach to 
discriminate between PSK and OQPSK signals. As it can be 
shown that a large class of linear modulated signals have 
identical second order statistics [34], researchers have since 
explored higher orders for further discrimination. In [36-“Mth 
law” classifier-,37,41], presence or absence of spectral lines in 
the spectrum of signals at the output of different order non- 



linearitiesl is used as a feature for the classification system. In 
the temporal domain, [42] propose a discriminating feature 
composed as a combination of fourth and second order 
cumulant at cycle frequency l/T to discriminate between 
3 PSK and 16 QAM. Recently, in [38-40], a general search 
algorithm has been proposed were the discriminating feature 
is the set of maxima (evaluated over different temporal delay 
vectors) of all cycle cumulants of different orders for cycle 
frequencies associated with a given signal. The deduced 
system is based on a maximum correlation classification of the 
extracted features since theoretical reference can be obtained. 
With the same approach, optimal ML classifiers have been 
theoretically explored in [45] in application to the general 
class of cyclostationary signals. 

Theoretical optimality in a ML sense of correlation based 
classifiers using temporal or spectral moment functions has 
only been demonstrated at order 2 [46]. In part 3, we extend 
this result to higher order moment functions. 

2.2 - The Maximum Likelihood approach 
In the ML approach, preliminary results can he found in [I] 

in application to the BPSK vs. QPSK modulation 
classification. Since this paper, many extensions (concerning 
the general MPSK and MQAM modulation classification 
problem [2-j], the special case of staggered modulation 
OQPSK [3]. and multiple hypothesis modulation 
classification [6]) have been published exploiting the same 
theoretical developments. Recently alternative developments 
[47] have been proposed in application to MPSK 
classification in a coherent and synchronous environment 
with square baseband pulse. In this section: we focus on the 
development given in [l-6] since they are not only valid in 
this special environment. 

In [l-6], the authors assume that the baseband pulse is of 
duration equal to the symbol period. This restriction allows 
them to develop the average log likelihood function under a 
small signal to noise ratio, and after some tedious calculus, 
they propose [4] 3 tests, noted qu for PSK and QAM signal 
classification and alternated tests noted pw for QAM signal 
classification [S]. These tests are expressed in tenns of Mth 
order moments of a stationary match-filtered version of the 
observation In [3], a table is presented which gives the value 
of possible :Lf - generally obtained as the lowest order for 
which classification is possible - for many binary 
classification problems. 

In addition to extensive simulations which show the quasi- 
optimality of the cl,” tests, a very’ interesting study is 
presented in [4] which links these tests to many other PR 
based systems. As main result and with some simple 
estensions, it demonstrates that all the PR systems described 
in the fist class in $ 2.1 can he viewed as implementation of 
equivalent or simplified and sub-optimal versions of the “I,“- 
tssls (for phase) and p,H (for modulus). Furthermore, the study 
demonstrated the link between qw- test and what is called 
“Mth law” classifiers which have already he referred in $2. I as 
classifiers exploiting the cyclostationary property of the 
signal [ 361. Then, it appears that a general ML framework must 

lit can be easily shown that the Fourier transfonn of the rrth 
power of the signal can he espressed as the integration of the 
rrth spectral moment function over the (II- l)th spectral 
frequencies which can he viewed as some kind of projection 
on the cycle frequencies axis. 

exist which globally justified the different approaches we 
have listed above, including correlation based classifier 
using temporal or spectral moment functions as discriminating 
features. This point is the object of the 3rd part of this paper. 

3-ANEWGENERALMAXIMUM 
LIKELIHOOD APPROACH 

3.1 - The General Maximum Likelihood 
Classifier (GMLC) 

Let us define the set {s(t,B,),C=l,...,~~~,f~Z) of 1Vc 
reference signals where the vector (9, is the set of the 
parameters describing the signal C. The classification problem 
we want to solve is the following: given the complex 
observation 

r(r)=s(f,~,)+N(t), O<r5S 

where n(t) is a white gaussian noise with power spectral 
density N,, find the number C of the emitted signal 

When the parameters f?, can he prohahilised one can 
classically define the Avera,ged Likelihood Function (ALP) 
of <f) under C hypothesis as- 

where IE !a denote the espectation over g,, Re[.] the real 
part and z the conjugate of z. The optimal classifier in the 
Masimum Likelihood sense is then given by: 

C = arg,m$ ALF,) (2) 

Unfortunately there are no closed fomr expression for (1). 
Some authors [l-6] have proposed some approximations of (1) 
that give sub-optimal tests under the restriction that the pulse 
is of duration T. Here we present a new approximation of (1) 
which generalises the previous one’s without no restriction 
on the pulse function. This classifier will be named “General 
Maximum Likelihood Classifier” (GMLC). 

Using the power series expansion of the exponential 
function in ( 1) and the identity Re[z] = (z + z-)/2 the ALF 
can be written 

ALF, = 1 + 2 “.I,,, , a, =(n!(2!Vo)“)-’ (3) 
n=l 

where A,,,, =@,~~~[r(f)s-(r,~,l+r-(f)s(~,8,)]~~l’. t4) 

LO 

Let us now define the 

which reduces to: 

21n this definition, the term depending only of the received 
signal which is a common constant to all LLF is dropped. The 
term depending only of the signal 
power is here assumed, under a 

s t,e,) 
I 

of finite averaged 
ong observation time, 

independant of the random parameters &, and is also 
dropped. 



(6) 

For each particular value ofj, r;! can be interpreted as the 
measurement of the correlation (integration over I) between 
the temporal moment function (8) of the reference, and the 
estimated one (7) of the observation. Note that by application 
of time-frequency duality !-i can be also interpreted as the 
correlation (integration over frequency domain) between 
reference and estimated spectral moment functions. Similar 
results have been obtained in [48] for MFSK modulation 
classification assuming a square pulse shape. 

Then considering development3 of (1) up to order e with 
equations (6-9) the GMLC is given by 

where & are constants that are adjust in order to minimise 
the Error Probability of the classifier. The value of Q is 
chosen at least to permit classification of the :Vc signal. 

Note at this point that no strong assumptions have been 
made on the signal mode! (see note 2) and the GMLC can be 
applied to every modulation tyv. In the nest section we 
consider the linear modulation classification problem. 

3.2 - GMLC tests for linear modulations 
For linear modulations signals s(r,H,) can be w&en 

kdl 

where S is the signal power, h(r) is the baseband pulse with 

d 
l?(r)& = I, T is the symbol period and e, = (Sc,r,,$,}. 

“e set SC = (sc,k, k = I,..., A’,} is an iid sequence of complex 
symbols which belong to a finite set depending of the 
modulation with !E,JS,,]=O and lE~c[lSc,,I.‘]= 1. I, is the 
symbol timing offset and & is the tamer phase. In this paper, 
we suppose that the symbol period T and the pulse shape 
h(r) are u pn’ori known and using terminology of [4] we 
consider four different environments depending on the 
statistics of t, and &,: 

- CS (coherent and synchronous): lo =O et & = 0, 
- NCS (non-coherent and synciuonous): r,, =O and & is a 

r.v. uniformly distributed over [0.2n[, 
- CA (coherent and asyncluonous): Q,, = 0 and I,, is a r.v. 

uniformly distributed over [ 0. T[, 
- NCA (non-coherent and asynchronous): r,, is a r.v. 

uniformly distributed over [O.T[ and Q,, is a T.v. 
uniformly distributed over [ 0.2~[. 

GMLC tests for PSK and QAM signals in these 
environments can be systematically defined using (IO) and 
(6). 

I.rt us first introduce the following notations: 

3The lowest is the SNR the more accurate is the truncated 
power series expansion. However it is we!! known that ML 
tests obtained by this way works well also at high SNR. 

where (14) is one of the nth order moment_of the symbols for 
signal C. In addition, if we define 1 = card( P, ) then we note 

A’ =~~~iex~(i(n-21)~,)~~~ = k.,,., (15) 

where 6 is the Kronecker symbol. With these notations and 
replacing the signal model (11) in (8). we obtain 

R;;(i) = ~rr~;~‘I’~(~) (16) 
k:- -k. 

where Y”(r) is given depcmding on the different cases by: 

- cs: Y’(c) = R;(isO) (17a) 

-NCS: Y’(r) = R;(i.O).Aj (17b) 

- CA: Y’(i) = F;(i) (17c) 

- NCA: Y’(i) = &(!).A). (17d) 

Then, the correlation r; becomes: 

rb = ~“‘:,p;(!p(!p! (18) 
WA 

Formula ( 14) ( 17) (18) give the way to implement the GMLC. 

3.3 - Application to M PSK / M’ PSK 
classification 

In the binary classification case (C=! or C=2) t!ie GMLC 
test ( 10) is rewritten as: 

lEc ! (19) 

where TV, is the optimal threshold. The minimum value of Q is 
chosen m order to verify the two following conditions: 

Yj(f) # 0 (20) 

and mj, # m:, (21) 
It can be easily shown that for M PSK /M’ PSK classification 
( M’ > M) condition (2 1) is verified as soon as (14) contains 
terms of type !E 5, [ SFk 1. 

In a CS environment (20) is always verified and the smallest 
value of Q for which (2 1) is verified is 0 = M with partitions 
j0 such that e = 0 or P= M, and k, =...= k,. In these cases 
the test ( 19) reduces to: 

We can see here that (22) is the expression of the correlation 
over ! between the observation’s U-th order moment 
function and the baseband pulse one for all cycle frequency 
k/T, k E Z In the particular case where h(r) is of duration 
T , tile test (22) can be simplified and becomes 

kT = (I [ 

M 
Re r(f)h’(f-(k-1)T)dr II gopl (231 

k (k-I,T 

which is the qu test defined in [4] in a CS environment. 



In a NCS case condition (20) imposes to have n= 2E. 
Under this constraint it comes that the smallest value of Q for 
which (21) is verified is Q = 2&f with partitions j, such that 
C = M, and k, =...= k,, k,w+, =‘..= kzM and k, fk,“,,. In that 
case the test ( 19) reduces to: 

(24) 

This result is well known in the frequency domain where all 
the cycle spectra at cycle frequency k IT are identically 
affected by a phase term arising from Q,,. As in the CS case, 
when h(r) is of duration T, it can be shown that (24) simplify 
to the optimal qu -test defined in [4] for NCS environmenti. 

Similarly, the GLMC tests in asynchronous cases (CA and 
NCA) are obtained by taking into account the integration 
(I 3) which leads to: 

(25) 

(26) 

where j, is the same in (25) as in (23) and in (26) as in (24). 
Note here that the GMLC gives a theoretical demonstration 

of test (26) that have been proposed in [4] by empirical 
considerations. 

In the frequency domain, it can be shown that (25) is the 
correlation over the spectra! frequencies / between the 
observation’s A4th order moment flmction anTthe reference’s 
one at null cycle frequency. In the same way, it can be shown 
that (26) is the summation over cycle frequencies k ! T , k E Z 
of the modulus of the correlation over / between the 
observation’s cycle Mth order moment ffiction and the 
reference’s one. This result is in accordance with the fact that 
cycle spectra are differently affected by a phase term arising 
timl t, [34,44]. 

4 -CONCLUSION 

In this paper, we have first presented a state of the art of 
linear modulation classification. Some new developments in 
masimum likelihood theory are then given which shown that 
the likelihood function of a observation given a reference can 
be closely approximated by a measure of the correlation 
between empirical and true temporal (or spectra!) higher order 
moment functions. A new Genera! Maximum Likelihood 
Classifier is derived and applied to linear modulation 
classification. Deduced tests have been shown to be 
equivalent to the qw and p,“-tests obtained in [i-6] under 
constrained baseband pulse and to provide a general 
theoretical framework for many pattern recognition based 
systems exploiting cyclostationarity of the modulated signals 
for classification as well as detection. 
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‘In the case of QAM classification, we note here that the 
choice n = &f and 1 = :li /2 with k, =...= k,,, will lead to 
another quasi optimal test in the NCS environment which 
simplify to the p,w-test [5] for h(r) of duration T, 


