MINIMUM PHASE FIR FILTER DESIGN FROM
LINEAR PHASE SYSTEMS USING ROOT MOMENTS

Tania Stathaki, Anthony Constantinides, Georgios Stathakis

Signal Processing and Digital Systems Section, Imperial College, UK

ABSTRACT

In this contribution we propose a mecthod for a minimum phase
Finite Impulse Response (FIR) filter design from a given linear
phase FIR function with the same amplitudc responsc. We arc
concentrating on very high decgree polynomials for which
factorisation procedures for root extraction are unreliable. The
approach taken involves the use Cauchy Residue Theorem
applied to the logarithmic derivative of the transfer function.
This leads into a sct of parameters derivable directly from the
polynomial coefficients which facilitate the factorisation
problem. The concept is developed in a way that leads
naturally to the celebrated Newton Identitics. In addition to
solving the above problem, the results of the proposed design
scheme arc very cncouraging as far as robustness and
computational complexity are concerned.

1. INTRODUCTION

The design of Finite Impulse Response (FIR) digital filters has
attracled considerable attention. An influcntial rcpresentative
of the methods is based on the Remez exchange algorithm.
However, most procedures assume a linear phase response
with the conscquence that the resulting filters do not have the
lowest group delay. Direct design with prespecified phase
response is possible [3]. In this paper we address the following
problem:

“Given a linear phase FIR digital filter transfer function to
determine an FIR digital filter which has identical amplitude
responsc but is of minimum phasc”

At first glance this may appear to be a trivial problem. Indeed a
naive approach would be to factorise the given FIR transfer
function and replace each of the zeros outside the unit circle
with its reciprocal. This, in principle at least. would leave the
overall amplitude response unaltered and would make the
resulting transfer function minimum phase. However
factorisation is a process fraught with difficultics in that it is a
“non well-posed™ ill-conditioned computational problem.

A new approach for polynomial factorisation without root
finding is employed in this paper. The fundamental concepts
rely on the root moments of polynomials which have been first
formulated by Isaac Newton and lead to the relationships now
known as the Newton Identitics.

2.  PRELIMINARIES

We consider a linear phase FIR digital filter transfer function
having the following form

n
H(zy=2" + " 4 hyz" 2 th, =[1Gz-r) (N
i=1

where r; are the roots of the polynomial H(z).

We employ the following notation:

® r;=rjy, if theroot r; is inside the unit circle.

®  rj=rjoy iftheroot r; is outside the unit circle.

hd ri =Tjs

Thus we can writc

H(z)= |il_[(z - rjin ):I{H(Z - rjout )}I:H(z - rjo )ji or
J J j

H(2) = Hyjn (D) H 1y (D H (2)
where H,;,(z) is the minimum phasc part ol H(z) and

if the root r is on the unit circle.

H 4ax (z) is the maximum phasc part of H(z). The factor
H(z) contains all roots that arc on the unit circle.

Some useful general points nced 10 be made.
e Linear phase FIR digital filter transfer functions have
non-minimum phase. From this follows that a real given

FIR transfer function has zcros at location z, 1/ z¢, 15

and 1/ zg for Izgl#1 .

e The group delay of an n th order linear phase FIR transfer
function is 7(@)=n/2. A typical FIR digital filter
transfer function may be of length 200 or more for a range
of applications with stringent specifications as in
tclecommunications. For such filters the group delay may
be undesirable particularly when it approaches about
200ms, when bidirectional human-to-human
communication is not viable.

e Often in many applications the phase responsc is either
unimportant or irrelevant. For example in some speech
processing areas it is not significant. This form of freedom
in the design of the filters is not normally taken into
consideration by existing FIR filter design methods.

e  For lincar phase FIR filters, the amplitude response is a
linear function of the design paramcters, that is the
impulse response coefficients. For minimum phase FIR
filters the amplitude response is a nonlinear function of
these coefficients. At any rate the design of such filters
from amplitude specifications would inevitably lead to a
stage of factorisation in order to select the appropriate
zeros and hence problems with imprecision would arise.

3. PROPOSED DESIGN ALGORITHM

We aim in this paper to derive the required nonlinear phasc
FIR filter transfer functions from corresponding lincar phase
functions which are assumed (o be designable by such standard
means as the Remez exchange algorithm.

Let the linear phase FIR filter transfer function be
H(2) = H ;0 (2)H ax (2)H ,(2) as alrcady indicated.

Let also n, be thc number of zeros of H,(z) and n; the
number of zeros of H ;, (z).

On the unit circle with z=el? we  have
Hoin(639)= A0)79 | H o (61)= 19 A(8)e719®) and



. n,l2 5 .
Ho(e)=T](z* - 2cos 6,z +1) =2 B(6)

r=1
Hence Hi(el®)= el */28[A0)] B(6)

The group delay as a fraction of the sampling period is
7(8) = (n; +"—7°) = ’—2’ . Moreover, | H (3=l H . (1)

Thus, in principle, to obtain a minimum phase version of the
given transfer function we can follow the steps below.

Step 1

Either determine H,,(z) and reflect its zeros into the unit

circle. or determine H;,(z) and make cach of its zeros of
multiplicity 2.

Step 2

Find H,(z)

Step 3

Construct the transfer function as 7(z) = [Hmin (z)]2 H,(2)

Then we shall have 17(e3 )=l H(e/)I.

Both Step | and Step 2 imply at first glance that a root finding
procedure may be required. However, as already pointed out,
root finding procedures are known to be inaccurate and
unreliable for large order polynomials. Factorisation without
root finding forms also the basis of the procedure developed in
[11.131.[4). In [1],[4] usc is made of the rcal cepstral
parameters as in [S]. where the cepstral aliasing problem is
rccognised and careful procedures are recommended to reducc
its effects. In [3] they approach the factorisation problem from
the Lagrange interpolation point of view. In the above
procedures it is assumed that the zeros of the transfer function
on the unit circle are a priori known. We make no such
assumption in our prescnt paper.

An alternative and direct polynomial construction procedure
without having to go through root estimation procedures is
possible through the Root Moments of a given polynomial [7-
8]. or the differential cepstrum [6].

4. ROOT MOMENTS

In relation polynomials typically given as in equ.(1) Newton
defined a set of paramelers given by

n
Su=n"+r"+4r," = Zr,-m 2)
i=1

wherc r; is the ith root of (1). The roots of (1) are not needed
cxplicitly to compute §,, in that thesc parameters can be
determined directly from the coefficients ;. The parameters
S
They arc related to many signal processing operations,
dominant amongst which is the differential ccpstrum. However
it would be limiting to think of them purcly in this sensc since
a wider perspective enables us to provide answers t0 many
digital signal processing problems that have been, hitherto,
unattainable [7].

are known as the root moments of the polynomial H(z).

4.1 Iterative Estimation of Root Moments

By writing the polynomial (1) as a product of factors we can
. , & H(z)
write H'(2)=Y

i=l %

and given that H(r;)=0 we have
—r

H'(z) = nz" 7 (S, +nh)z" 72 +(Sy + BSy +nky)z" 3+

+ (S + WSy + ISyt -nhy )2
By direct differentiation of equation (1) we have
H'(z) =nz" 4 (n=Dhz" 2 +(n - 2Dy +
--~+(n—m)h,,,z"”"_l+-~- 3
Hence by equating the last two expressions we obtain the
following fundamental relationships known as Newton
Identities
Sl +ﬂh| =(n—l)h, or Sl +hl =0
SZ + h]Sl + nhg = (’l s 2)h2 or S?_ + hIS] + 2[’!2 =0
and generally
S+ Sy + 1Sy oyt +nhy, =(n—mh, or
Sm +hlSm_| +h25m_2+-~-+mhm =) (4)
When the signal treated by this means is infinitely long, the
above cquation is repeatedly used to calculate successive
values of thc root moments. Il the signal is of finite duration
thenfor m>n S, +mS, | +hS, o+-+h,S5, , =0.
The same relationship as above can be used to calculate §,,
for m<0 by inserting successively values for m equal to
n-1, n-2, n-3.---etc. It should be noted that §, for

either positive or ncgative values of m arc evaluated
recursively from the coefficients of equation (1) alone.

The above relationships also follow from the definition of the
differential cepstrum and are essentially included in |6].
However in [6] n is assumed to be finite a priori known. This
is only a minor point as the iteration in equ.(4) do not require n
to be finite and, hence, they can be applied to infinite duration
signals. It is sufficient at this juncture to observe that both
finite duration signals and infinite duration signals of
cxponential entire function type interpretation can be treated in
the same way [7]. To facilitate the exposition, thc parameters
in (2) are referred to as the root moments. This terminology
emphasises the deviation from the differential cepstrum.

4.2 Implications and Interpretation

Essentially one can interpret the set of cquations (4) as a
transformation of the coefficients {h,} to the parameter sct
{Sm} of the same cardinality. The transformations arc one-to-
one and hence we can have the following existence corollaries.
Corollary 1~ Given a sct of cocfficients {1, } of the nth

degreec  polynomial in equation (1) which has roots
{r}i=1--n, there cxists a set of parameters
{S,,,} m=1.--,n, Sy =n,given by cqu.(2).

Corollary 2 Converscly given a set of root moments {S m}
there exists a set of coefficients {h,} r=1.--,n for a

polynomial as in equ.(l1) detcrminable recursively through
equ.(4). The proofs are self evident from the above analysis.

4.3 Root Moments of Products of Signals

In our main problem we need the following result. Assume that
the root moments of the polynomial f;(z) are $J) and the
root moments of the polynomial f,(z) are S,{:’lm. Then the
f(2)= [(2)f2(z) are

root moments of the product

) _ ¢ fite) o ¢ falz
§L) = s Sy g h0)



4.4 Non Iterative Estimation of Root Moments

The Newton Identities yield the root moments of the entirc
signal, encompassing not only those roots that lic within the
unit circle but also those that are outside the unit circle.
However, it is often the case that a specific factor of a given
polynomial H(z) is required. such as the minimum phase
factor and in this case its root moments can be determined in a
differcnt manner.

Let a closed contour T' defined as z = p(O)ejg contain the

roots of the required factor of H(z) . Then it follows from the

Cauchy residue theorem that the root moments of this factor
are given by

Ir(m)=S§,, =— ?1_ Hiz ) z (5)
This is cvident from the fact
sk = z"dz
m §r _ r )

and the contribution to the mtegranon are those due to those
r;’s that lic within T". (It is assumed that we have no zeros on
r)

In practice the contour intcgration will have to be effected
u1rcu1y from the coefficients of H{z) and this can be done
quite convenicntly through the use of the DFT as it is shown
below.

Equation (5) becomes for z = p(H)()jg

. 1 7 ) .
Sy =— Ig(a)?J("'+')Hd6 6)
25 2,
where
H'(p(6)e'® dp(6
o(0) = 212 )".F,\’( L, )+Jp<e))p () 0
H{p(8)e'") \
Discretisation of equation (6) suitable for DFT use requires
values 6, = ‘N k, k=0l .N-1 for an N -point
transform. Therefore. we have the inverse DFT
N-l )
S,I;, = L 2 2(6; )e-'(m+l)0" (8)
V(2
If the contour of integration is the unit circle C Iz =1 then

the resulting root moments from the above, correspond t
of the minimum phase component of H(z). In this case we
have the special form of (8)

5, Jm@ o 1 N H(B) jomena, ©

N o H()

For either equ.(7) or for the special form of equ.(8) the
computation of g(8), ) can be done through the usc of the DFT
also.

It is observed thaton z = p(G)ejg we can write

. n—1 . .
= ().l(n—l)H z(" _ i)hipn—l—l (9)6-116’
i=0
which for 6 = 6, can be computed as

H'(p(8)e'?)

i1

TP T- IRV =
Y 7 ’
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Similarly we have

H(p(8; )l ) = eIt DFI‘{h,-p"""(Gk )} (1)
and hence

DFT(n - ik, p" ()}
8B )=e 1% . 2

DFr{h,- P8, )}

ap(@) ., . m
6)—"—=+jp(6 6
(P( ) 40 +ipl )jp (&)

With N a power of 2 we can use the Fast Fouricr Transform
(FFT) algorithm.

S. THE ALGORITHM

The algorithm relies on the direct extraction of the appropriate
factors from the FIR lincar phase transfer function needed to

implement 7(z) above.

Step 1:

Integrate around a circle centred at the origin and of radius less
than unity. The radius of the contour is of crucial importance
and it is cxamined scparately below.

The integration with a careful choice of the contour radius

gives §y(m)=3S§,,(m) which parameters corrcspond to the root

moments of that part of the original FIR transfer function
which has its zeros inside the unit circic.

Step 2:

Integrate around a circle centred at the origin and of radius
grecater than unity. Again the radius of the contour must be
selected carefully, but a good selection in Step 1 yields a
correspondingly good sclection as the reciprocal of the radius.
The integration produces the parameters
Sy(m)= S8, (m)+ Sy(m) where Sy(m) are the root moments

of that factor of the original FIR digital filter transfer function
which has its zeros on the unit circle.

Step 3:

The required transfer function has the root moments
S(m)=2S8;,(m)+ Sy(m) , obtained as S(m) = S;(m)+S,(m).

Step 4:

From Step 3 and from the Newton Identitics we form the
required polynomial FIR transfer function of dcgree
S1(0)+5,(0).

5.1 Estimation of the Radii of the Integration

ntine in tha anrith

The radii of i uucbfuuuu in the above cub\uluuu must be chosen
so as to enclosc the appropriate zeros of the given FIR digital
filter transfer function. Thus for S;(m) the radius of the

intcgration contour r must be such that 1>r> max(ln,l),
while for S,(m) the radius of the integration contour r must
be chosen such that | < r < min(lr,,!).

For equiripple piecewise constant filters the required radii can
be estimated as follows.
Let us remove the linear phase factor from the frequency

t, 1ald 1 o 1 £ ticxnn Thic fiinats
Tesponse o yi€iG Oy a réa: function. This function now we

shift vertically half way between its maximum and minimum
values. Since the initial transfer function is equiripple the
result of thesc operations will be a real function of equiripple
modulus almost everywhere. The ripple variation remains
unchanged. namely a normalised response will vary between
1+8 and 1-J almost everywhere except in the transition
band. In Fig. 2 we indicate the zeros of the shiftcd transfer
function.



A rcasonable represcntation of this zero pattern almost
everywhere, is given by

) =(" —a") "~ )
a

(12)
The above transfer function is equiripple. linear phase and its
zeros are located on two circles controlled by the parameter a.
The amplitude characteristic is equiripple between the values

1
Croax =2+ (a" +L) and Cpip =2—-(a" +—).
a” a”
The ripple width of C(z) can be found from its maximum and
minimum values which yield the ripple variation of the shifted

2

FIR filter &= . The quantity &6 is an a priori
n

(¢" +—)
a’l
known design parameter. Hence we can estimate the radius of
the circle on which the zeros arc cxpected to be located as
1

a =[l5i ’(é——l)]" . For small ripple width the above can

approximated to a=(%)". We show a specific minimum

phase design result in Fig. 3 along with further results as
indicated below.

5.2 Variations in the Procedures

It may be the case in a system application that the reduction in
the group delay obtained by the above algorithms is more than
the required amount. Then we can improve the non linearity in
the phasc response as follows.
o The root moments corresponding to the stop band
transmission zeros remain the same as above.
e  From the rest of the zeros we can select an appropriate
number in conjugate form, for real transfer functions,
in an arbitrary fashion.
Fig. 3 shows such an cxample, from which it is seen that the
group delay here is more than the minimum but less than its
maximum value. It is almost equiripple to a constant. Further
work is nccessary to explore the options open here.

6. EXPERIMENTAL RESULTS

Figure | shows the amplitude of the shifted frequency responsc
while Figure 2 shows its zeros. It is seen that these zeros are
similar of those of C(z). Figure 3 shows the group dclay
responscs for the minimum phasc and for another intermediatc
solution for which the maximum phase zcros have been
selected on alternate basis. It is cvident that the proposed
mecthod operates as cxpected. However, there are many
questions that need to be addressed particularly in relation to
the choice of contour for the implementation of cqu.(9).
Morcover, therc is the need for exploring further the
implications of equ.(12).
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Figure 1: Shifted frequency response
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Figure 3: Group delay responses
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