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ABSTRACT 

In this contribution we propose a method for a minimum phase 

Finite Impulse Response (FIR) Iilter design from a given linear 

phase FIR function with the same amplitude response. We arc 

concentrating on very high degree polynomials for which 

factorisation procedures for root extraction are unreliable. The 

approach taken involves the USC Cauchy Residue Theorem 

applied to the logarithmic derivative of the transfer function. 

This leads into a set of parameters derivable directly from the 

polynomial coefficients which facilitate the factorisation 

problem. The concept is developed in a way that leads 

naturally to the celebrated Newton Identities. In addition to 

solving the above prohlem, the results of the proposed design 

scheme arc very encouraging as far as robustness and 

computational complexity are concerned. 

1. INTRODUCTION 

The design of Finite Impulse Response (FIR) digital filters has 

attracted considerable attention. An influential representative 

of the methods is based on the Remcz exchange algorithm. 

However. most procedures assume a linear phase response 

with the consequence that the resulting filters do not have the 

lowest group delay. Direct design with prespecified phase 

response is possible 131. In this paper we address the following 

problem: 

“Given a linear phase FIR digital filter transfer function to 

dctcrminc an FIR digital filter which has identical amplitude 

response but is of minimum phase” 

At tirst glance this may appear to be a trivial problem. Indeed a 

naive approach would he to factorise the given FIR transfer 

function and replace each of the zeros outside the unit circle 

with its reciprocal. This, in principle at Icast. would leave the 

overall amplitude response unaltered and would make the 

resulting transfer function minimum phase. However 

Ihctorisation is a process fraught with difficulties in that it is a 

“non well-posed” ill-conditioned computational problem. 

A new approach for polynomial factorisation without root 

finding is employed in this paper. The fundamental concepts 

rely on the root moments of polynomials which have been first 

formulated by Isaac Newton and lead to the relationships now 

known as the Newton Identities. 

2. PRELIMINARIES 

We consider a linear phase FIR digital liltcr transfer function 

having the following form 

H(z)=:” +h,~‘~-‘+h&‘-~+~..+h,, =fi(z-q) (1) 
i=l 

where ri are the roots of the polynomial H(z). 

We employ the following notation: 

. r, = ‘ji” if the root ri is inside the unit circle. 

. ri = riout if the root ri is outside the unit circle. 

. rj = rj,, if the root r, is on the unit circle. 

Thus we can write 

H(z)= n( .-r-. ) n(:- ) n(-- . . ) [ i 7 P ][ j < r~~~~lt][ j d b ] or 

H(Z)= H,,,i,(Z)H,,,(~)H,(Z) 

where H,r,in(‘) is the minimum phase part of H(z) and 

Hmax(:) is the maximum phase part of H(z). The factor 

H,(z) contains all roots that arc on the unit circle, 

Some useful general points need to be made. 
. 
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3. 

WC 

Linear phase FIR digital liltcr transfer timctions have 

non-minimum phase. From this follows that a real given 

FIR transfer function has zeros at location z,-, , I / zn , :i 

and l/z; for Iz,~+ I 

The group delay of an n th order linear phase FIR transfer 

function is ~(0) =nl2. A typical FIR digital filter 

transfer function may be of length 200 or more for a ran&c 

of applications with stringent specifications as in 

telecommunications. For such filters the group delay may 

be undesirable particularly when it approaches about 

200ms. when bidirectional human-to-human 

communication is not viable. 

Often in many applications the phase response is either 

unimportant or irrelevant. For example in some speech 

processing areas it is not significant. This form of freedom 

in the design of the filters is not normally taken into 

consideration by existing FIR filter design methods. 

For linear phase FIR tiltcrs. the amplitude response is a 

linear function of the design parameters. that is the 

impulse response coefficients. For minimum phase FIR 

filters the amplitude response is a nonlinear function 01 

these coefficients. AI any rate the design of such liltcrs 

from amplitude specifications would inevitably lcad to a 

stage of factorisation in order to select the appropriate 

zeros and hence problems with imprecision would arise. 

PROPOSED DESIGN ALGORITHM 

aim in this paper to derive the required nonlinear phase 

FIR filter transfer functions from corresponding linear phase 

functions which are assumed to bc dcsignablc by such standard 

means as the Remcz exchange algorithm. 

Let the linear phase FIR filter transfer function hc 

H(z) = Hmin(z)H,,,,(~)H,(i) as already indicated. 

Let also n,, be the number of zeros of H,,(z) and ni the 

number of zeros of Hn,in (L) 

On the unit circle with :=eiH WC have 

ffnlin (P) = A(B)ej@(H). H,,;, (de ) = c.innSA(B)cJ-j@(e’ and 



I!,,/2 

Ho Cl> ‘O)= n(:* - 2cos~rz + I) = J@‘%(8) 

r=, 

Hence H(P~*) = e j(n!+oll~2)s[A(@]2 ~(0) 

The group delay as a fraction of the sampling period is 

~(0) = (n; +$) = 4. Moreover, I Hmin(r”)I=I Hmax(e.iH)I 

Thus, in principle, to obtain a minimum phase version of the 

given transfer function we can follow the steps below. 

Step 1 
Either determine H”,,,(z) and rctlect its zeros into the unit 

circle. or dcterminc Hmin(:) and make each of its zeros of 

multiplicity 2. 

Step 2 
Find H,,(z) 

Step 3 

Construct the transfer function as T(Z)= [H,,(z)]* H,(z) 

Then we shall have IT(ej’)l=l H(r”)I. 

Both Step I and Step 2 imply at first glance that a root linding 

procedure may be required. However, as already pointed out, 

root finding procedures are known to be inaccurate and 

unreliable for large order polynomials. Factorisation without 

root finding forms also the basis of the procedure developed in 

[1 1.[31.[4]. In [ I],[41 USC is made of the real cepstral 

parameters as in [S]. where the ccpstral aliasing problem is 

rccopnised and careful procedures are recommended to reduce 

its effects. In [3] they approach the factorisation problem from 

the Lagrange interpolation point of view. In the above 

procedures it is assumed that the zeros of the transfer function 

on the unit circle arc a priori known. We make no such 

assumption in our present paper. 

An alternative and direct polynomial construction procedure 

without having to go through root estimation procedures is 

possible through the Root Moments of a given polynomial [7- 

81. or the differential cepstrum 161. 

4. ROOT MOMENTS 

In relation polynomials typically given as in equ.(l) Newton 

defined a set of parameters given by 

S, = r,m +qm+...+r,“’ = ir;” (2) 
i=l 

where rj is the ith root of (I). The roots of (I) are not needed 

explicitly to compute S,, in that thcsc parameters can be 

determined directly from the coefficients hi The parameters 

S, are known as the root moments of the polynomial H(z) 

They arc related to many signal processing operations. 

dominant amongst which is the differential ccpstrum. However 

it would be limiting to think of them purely in this sense since 

a wider perspective enables us to provide answers to many 

digital signal processing problems that have been, hitherto, 

unattainable 171. 

4.1 Iterative Estimation of Root Moments 

By writing the polynomial (I) as a product of factors we can 

’ H(z) 
write H’(:)=x- and given that H(ri ) = 0 we have 

,=, i - r; 

H’(z) = n,1”-’ +(S, +nh,)~~-~ +(A’, +h,S, +r~h~)i”-~+... 

+(S,,, + h,S,-, + h2Sm-2+...+nh,)z n-m-’ +. . 

By direct differentiation of equation (I) we have 

H’(z) =n$- +(n-l)h,~“-~ +(n-2)h2i”-’ + 

...+(n-m)h,Zn-m-l+... (3) 

Hence by equating the last two expressions WC obtain the 

following fundamental relationships known as h&vron 

identities 

S, + nh, = (n - I)h, or S, + h, = 0 

S2 + h,S, + nh, = (n - 2)h, or S2 + h,S, + 2h2 = 0 

and generally 

S, + h,S,-, + h2Sm-2+...+nhm = (n - m)h,,, or 

S,, + h,S,-, + h2Smm2+...+mh,,, = 0 (4) 

When the signal treated by this means is infinitely long, the 

above equation is repeatedly used to calculate successive 

values of the root moments. II’ the signal is of finite duration 

then for m > n S, + h,S,-, + 112Sm-2+...+/1,,S,_,, = 0 

The same relationship as above can bc used to calculate S,,, 

for m < 0 by inserting successively values for m equal to 

n-l, n-2, n-3:..ctc. It should be noted that S,, for 

either positive or negative values of m arc evaluated 

recursively from the coefficients of equation (I) alone. 

The above relationships also follow from the delinition of the 

differential ccpstrum and are csscntially included in 161. 

However in [6] n is assumed to be finite a priori known. This 

is only a minor point as the iteration in equ.(4) do not require n 

to hc finite and, hence. they can bc applied to infinite duration 

signals. It is suflicicnt at this juncture to observe that both 

finite duration signals and infinite duration signals 01 

exponential entire function type interpretation can hc treated in 

the same way 171. To facilitate the exposition, the parameters 

in (2) are referred to as the root moments. This terminology 

emphasises the deviation from the differential ccpstrum. 

4.2 Implications and Interpretation 

Essentially one can interpret the set of equations (4) as a 

transformation of the coefficients {h,} to the parameter set 

{S,,,} of the same cardinality. The transformations arc one-to- 

one and hence we can have the following existence corollaries. 

Corollary 1 Given a set of coefficients {h,} of the n th 

degree polynomial in equation (I) which has roots 

{ri} i= I;...n. there exists a set of parameters 

{Sm} m = I:..,n, S,, = n , given by cqu.(2). 

Corollary 2 Convcrscly given a set of root moments {-In!} 

there exists a set of coefficients {h,.) r = I:...n. for a 

polynomial as in equ.(l) determinable recursively through 

cqu.(4). The proofs are self evident from the above analysis. 

4.3 Root Moments of Products of Signals 

In our main problem WC need the following result. Assume that 

the root moments of the polynomial f,(z) are Sit’) and the 

root moments of the polynomial .f;(z) are S,J;‘(‘) Then the 

root moments of the product ,f’(:) = ,/;(Z),/?(Z) are 

sl”’ = Sf,(Z) +sp, 
m ,n 



4.4 Non Iterative Estimation of Root Moments 

The Newton Identities yield the root moments of the entirc 

signal, encompassing not only those roots that lit within the 

unit circle but also those that are outside the unit circle. 

However, it is often the case that a specific factor of a given 

polynomial H(z) is required. such as the minimum phase 

factor and in this case its root moments can be determined in a 

different manner. 

Let a closed contour I- defined as z = p(B)eJe contain the 

roots of the required factor of H(z) Then it follows from the 

Cauchy residue theorem that the root moments of this factor 

are given by 

(5) 

This is evident from the fact 

“dz 

and the contribution to the integration are those due to those 

rj’s that lit within r (It is assumed that we have no zeros on 

r- .) 
In practice the contour integration will have to be effected 

directly from the coefficients of H(z) and this can hc done 

quite conveniently through the use of the DFI as it is shown 

below. 

Equation (5) becomes for z = p(19)P 

where 

g(e) = H'(p(e)ajs) p(@)dpo+ jp(e) 
H(p(@P) i de 1 

p"(e) (7) 

Discretisation of equation (6) suitable for DFT use requires 

values @.=zk k=Ol. 
’ N ’ ‘*“’ 

N-l for an N-point 

transform. Therefore. we have the inverse DFT 

(8) 

If the contour of integration is the unit circle C: [iI= I then 

the resulting root moments from the above. correspond to those 

of the minimum phase component of H(z) In this case we 

have the special form of (8) 

s 
m 

j ,,,,,, (d rc L”-’ ff cek 1 J(m+l)H, 
c N k=O fwk) 

(9) 

For either cqu.(7) or for the special form of cqu.(8) the 

computation of s(Ok ) can be done through the USC of the DFI 

also. 

It is observed that on z = p(B)e@ we can write 

Ht(fle)J@) = J(n-l)~“-’ Ccn - i)hipnmi-l (c),-NJ 
i=O 

which for 6 = ok can be computed as 

H’(p(e, je.i4 ) = $-I)4 DFT tn - i)hip”-‘-‘(ek ) 
I 

(10) 

Similarly we have 

tf(p(ek )& ) = ,jns, Dm(hi,“-‘(ek )} 
and hence 

DFT 
&ek ) = ,-j’ i 

(n - i)hip”-‘-’ (f3, ) 

Dm h;prtmi(ek ) 

(11) 

t 
p(e) @f + jpce) 

1 
p”(e) 

With N a power of 2 WC can use the Fast Fourier Transform 

(FFT) algorithm. 

5. THE ALGORITHM 

The algorithm relies on the direct extraction of the appropriate 

factors from the FIR linear phase transfer function needed to 

implement T(z) above. 

Step 1: 
Integrate around a circle ccntred at the origin and of radius less 

than unity. The radius of the contour is of crucial importance 

and it is examined separately below. 

The integration with a careful choice of the contour radius 

gives S, (m) = Si” (m) which parameters correspond to the root 

moments of that part of the original FIR transfer function 

which has its zeros inside the unit circle. 

Step 2: 
Integrate around a circle ccntred at the origin and of radius 

greater than unity. Again the radius of the contour must hc 

selected carefully, but a good selection in Step I yields a 

correspondingly good sclcction as the reciprocal of the radius. 

ThC intcgralion produces the parameters 

Sz(m) = Si, (m) + St)(m) where So are the root moments 

of that factor of the original FIR digital filter transfer function 

which has its zeros on the unit circle. 

Step 3: 
The required transfer function has the root moments 

S(m)=2Si,(m)+ So(m), obtained as S(m)= SI(m)+S?(m) 

Step 4: 
From Step 3 and from the Newton ldcntitics we form the 

required polynomial FIR transfer function of degree 

s, (0) + S2(0). 

5.1 Estimation of the Radii of the Integration 

The radii of integration in the above algorithm must he chosen 

so as to enclose the appropriate zeros of the given FIR digital 

filter transfer function. Thus for S,(m) the radius of the 

integration contour r must be such that I > r 1 max(l q, I ) , 

while for S2(fn) the radius of the integration contour r must 

be chosen such that I < r < min(l rOU, I ) 

For equiripple piecewise constant tiltcrs the required radii can 

be estimated as follows. 

Let us remove the linear phase factor from the frequency 

response to yield only a real function. This function now WC 

shift vertically half way between its maximum and minimum 

values. Since the initial transfer function is cquiripple the 

result of these operations will he a real function of equiripplc 

modulus almost cvcrywhere. The ripple variation remains 

unchanged. namely a normaliscd response will vary hetwecn 

I + 6 and 1 - 6 almost cverywhcrc except in the transition 

band. In Fig. 2 WC indicate the zeros of the shifted transfer 

function. 



A reasonahlc representation of this zero pattcm almost 

evcrywherc. is given by 

C(z)=(:“-u”)(Z” -1) 
un 

The above transfer function is cquiripple. linear phase and its 

zeros are located on two circles controlled by the parameter n. 

The amplitude characteristic is equiripple between the values 

C m;u =2+(n” +L) and Clllin =2-(a” +L). 
lln cl” 

The ripple width of C(z) can be found from its maximum and 

minimum values which yield the ripple variation of the shifted 

FIR filter 6= 
2 

(un +‘, 

The quantity 6 is an a priori 

lln 

known design parameter. Hence we can estimate the radius of 

the circle on which the zeros arc expected to be located as 

+$$I]~. For small ripple width the above can 

0 
- 

2 n 
approximated to u = - 

s 
WC show a specitic minimum 

phase design result in Fig. 3 along with further results as 

indicated below. 

5.2 Variations in the Procedures 

It may he the case in a system application that the reduction in 

the group delay obtained by the above algorithms is more than 

the required amount. Then we can improve the non linearity in 

the phase response as follows. 

. The root moments corresponding to the stop band 

transmission zeros remain the same as above. 

. From the rest of the zeros WC can select an appropriate 

number in conjugate form, for real transfer functions, 

in an arbitrary fashion. 

Fig. 3 shows such an example, from which it is seen that the 

group delay here is more than the minimum but less than its 

maximum value. It is almost equiripple to a constant. Further 

work is ncccssary to explore the options open here. 

6. EXPERIMENTAL RESULTS 

Figure I shows the amplitude of the shifted frequency response 

while Figure 2 shows its zeros. It is seen that these zeros are 

similar of those of C(z). Figure 3 shows the group delay 

responses for the minimum phase and for another intermediate 

solution for which the maximum phase zeros have been 

selected on alternate hasis. It is evident that the proposed 

method opcratcs as expected. However, there are many 

questions that need to hc addressed particularly in relation to 

the choice of contour for the implementation of cqu.(9). 

Moreover, there is the need for exploring further the 

implications of equ.( 12). 
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Figure 1: Shifted frequency response 
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Figure 2: Zeros of shifted zero-phase response 
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Figure 3: Group delay responses 
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