ESTIMATION OF FM MODULATION OF MULTI-COMPONENT SIGNALS
FROM THE FOURIER PHASE
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Spectral phase is a quantity which is normally dis-
carded in analyzing signals. In this paper, the concept of a

complex time-frequency representation is presented in
which the rows are narrow bandpass filters and the col-
umns are broadband Fourier spectra. Methods are devel-
oped which exploit the spectral phase of the surface to
recover the FM modulating function of an FM modulated
tone and an FM modulated multi-component harmonic sig-
nal.
1.0 INTRODUCTION
In the literature, there are frequently fundamental prin-
ciptes which are loosely mucd or which become loosely or
improperly remembered. These principles then find their
way back into the literature in the form of theorems and
results which are much weaker than they should be. An
example of this is the principle that the Fourier transform.
It is often stated that the Fourier transform of a rectangu-
larly windowed signal is the spectrum of the signal con-
volved with a sinc function. What is really meant is that the
magnitude of the observed spectrum is somehow related to
the magnitude of the signal spectrum and the magnitude of
a sinc function. Since most spectral processes ignore the
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The purpose of this paper is to describe processes

which take advantage of the spectral phase to obtain a pro-

cessing gain or to obtain results which can not be obtained
from the spectral magnitude alone. Applications of spectral
phase were first published by the authors in several internal
publications published in the mid 1980’s (e.g. [3], (4], [5)).
A major result in these papers was the cross-power spectral
estimation (CPS) algorithm. In this algorithm, the signal is
channelized by considering the short-time Fourier trans-
form as a time-varying process. In this representation, the
complex sonogram is a bank of narrow-band filters which
are assumed to be sufficiently narrow to separate the com-
ponenis of a multi-component signal environment. In the
CPS application, each signal component is assumed to be a
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stationary tone. The tone is detected by applying FM dis-

crimination or instantaneous frequency transform (IFT) to
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each of the channels. Since the tones are assumed to be sta-
tionary, the estimates may be averaged in time to produce

improved detection nraocedura The nracace admite
an Improvea geteclion procegure. in¢ process aamiis an

interpolation method which basically estimates the fre-
quency of the original tones from the position of the Fou-
rier transform bulges and the differentiated phase estimate
provided by the IFT. This process works extremely well,
and has proven to be superior to normal power-spectrum
methods for detecting and estimating the frequencies of
weak tones in noise.

The process was improved by Umesh and Nelson [6]

by incorporating the Kay windowing function. With this
lmprovement the CPS algorlthm satisfies the Cramer—Rao
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for parameterlzmg two sngnal types. The flrst of these is a
single linear FM modulated tone in noise. The second is a
frequency modulated multi-component signal whose spec-
trum at any time consists of the union of narrow-band har-
monic components. The time varying harmonic structure
assumption would seem to be quite restrictive, but, in fact,
any signal which is nearly periodic may be expected to
have such a structure.

2.0 TIME- VARYING FOURIER TRANSFORM
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The time-varying Fourier transform is then given by

S (W) = IS(t)W(nL ~t)e
I

n

where the W is an arbitrary windowing function whose

_im(’—nL)dt . (2)

B

support is the interval (—TL’ } . We can rewrite (2) by let-

ting



W) = W(r)e'™ 3)
If we consider the function
Sy1) = S)*W(r), (4)
where * denotes convolution. we see that
Sp(e, W) = S,,(nL). (5)

This means that the time-varying Fourier transform (2)
may be interpreted as the decimated output of an FIR filter
applied to the original signal. We will refer to the time-

varying Fourier transform at frequency w as the channel at

frequency . With this interpretation of the Fourier trans-
form, the phase may be predicted and used to recover sig-
nal parameters. If the Fourier transform in equation (2) is
discrete and finite, the resulting time-frequency (TF) sur-
face is sampled on a discrete lattice. If the windowing func-
tion is the rectangular window, this lattice is maximal in
the sense that, for each such lattice, the values on that lat-
tice are a minimal spanning set from which the signal may
be reconstructed exactly and uniquely by concatenating the
inverse Fourier transforms over each time lattice point.

3.0 RECOVERY OF A POLYNOMIAL FM
MODULATED TONE.

We now consider a simple polynomial FM modulated
tone and give two simple algorithms for recovery of the
FM modulation. A polynomial FM modulated signal may
be represented as

N
F(1) = Aexp[i((p +[ Y m,,t"D]. (6)
n=1

The phase of F may be differentiated by the normal delay-
conjugate-multiply (DCM) discrimination process of mul-
tiplying the signal by the complex conjugate of the delayed
signal to produce the recursion

FPue) = FO D" Y a—ey. n= 1,2, ..., (7)

where F(O)(t, €) = F(r). The phase derivatives may then
be computed as

arg(F"(1, £)

n

o"™(1) = lim
£E—0 €

(8)

where ®(r) = arg(F(1)), and CD(") is the nth time deriv-
ative.
For sampled signals, the limit in (8) can not be com-

puted, but the w, may be computed if the degree of the

phase polynomial in (6) is known. The @, may be com-

puted recursively by first solving for

oy = m—arg(FV 1 e)). )
e N!

Since arg(F(")(t, €)) is a polynomial involving only w,,
for k = n.....N, w, may be recovered by substituting

the known values of ¢, r, and ®,, k=n+1 .. N into

the expression for F(")(t, €). In the absence of noise, the
degree N of the phase polynomial may be estimated since

the expected value of w, calculated by equation (9) is

independent of ¢, and therefore constant.
For linear FM modulated tones (w, =0, n>2), the

phase polynomial may be recovered by fixing € and Fou-
rier transforming the resulting time signal F(”(t, €). The
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resulting spectrum, F( )((n) has an expected bulge at
© = 2em,.

4.0 RECOVERY OF AN FM MODULATED
HARMONIC SIGNAL.

The assumption in the above discussion is that the sig-
nal is a modulated single tone. Under this assumption, the
signal has only one component at any time, and the instan-
taneous frequency represents the signal’s frequency. If the
signal has multiple components, the full-band FM discrimi-
nation process will result in cross terms since all signal
components mix when the nonlinear process is applied to
the signal. In this case, the methods of the previous section
may not be used to recover the FM modulation.

It is well known that any periodic signal has a har-
monic spectrum in which the spectral energy is concen-
trated in the narrow-band harmonics

Q, =nQ,, (10)

n

where €, is the n'h harmonic, and Q, is the fundamental

repetition frequency of the periodic signal. If the periodic-
ity of the signal changes with time, under certain circum-
stances, the harmonic relationship

Q, (1) = nQ,(1) (an
is satisfied. An example of such a situation is a puise fre-
quency modulated (PFM) impulse train

F(t) = 28(10+nP(t)), (12)

where P(t) is the slowly time-varying pulse period.
For signals satisfying (11). we see that the harmonics
are phase locked. Indeed, if the fundamental has frequency

Q(t) at time t and frequency Q,(7,) +AQ at time

t + At then the n’h harmonic has frequencies nQ,(¢) and

n(€2,(¢) +AQ) at time t and r+ At respectively. If we



normalize by dividing by the frequency of the ' compo-
nent, we have in the limit
Q,'(1)
Q, (1)

a function of ¢ alone. We may assume that between the
harmonics, the expected spectral energy is zero, so the
spectral phase may be chosen arbitrarily, resuiting in the
general relationship is
o _
Q0 (). (14)
We now derive a method for estimating the FM modu-
lation of a multi-component harmonic signal from the
phase of the complex TF representation. For simplicity, we
present here only the case of a linear FM modulated har-
monic structure. The result generalizes to harmonic struc-
tures with general phase functions ®(t). The assumption
that the signal components are linearly chirped is equiva-
lent that the phase of each component may be represented
as a polynomial of degree two in time with constant coeffi-
cients. In general signals are not constant linear chirps for
all time. In this case, we assume that the signal may be rep-
resented locally as linear FM chirps. In this case, we may
assume that the phase coefficients are slowly varying. By
(14), we can factor an ®, out of the phase function to rep-

= y(1), (13)

resent the signal as
2
F(1) = Y A,exp(i(9, + w,(t+ K1), (15)
where A, ¢, ®,, and k are assumed to be very slowly

changing functions of time.

We wish to solve (15) for x, and the function F(1) is
the observable. By (5). we see that, applying the time-vary-
ing Founer transform to (15), results in the condition that
each channel of the Fourier transform contains at most one
signal component at any given time, as long as X is not too
large and the transform has sufficient resolution to resolve
the signal components. This resolution requirement is a
joint time-frequency constraint which is subject to a condi-
tion similar to the Heisenberg uncertainty principle.

We now apply a DCM process similar to (7) to each
channel of the time-varying Fourier transform, to get

Fow, W) = Fy(o, W)F v-e(o, W), (16)

For each , F,(w, W) is assumed to be dependent on

at most one signal component, so the quadratic surface
resulting from the DCM process contains no cross-terms.

Furthermore, each component of ¥, (®, W) has the local
form

io(e + x(2ev - 52))

Fo(o, W) = A(®)A, _(0)e . (17)

where v is the time variable, and A, (®) is an amplitude

term, which is assumed to be slowly time-varying. Note
that (17) is a local expansion where the signal representa-
tion at each point on the time lattice is assumed to be evalu-

ated at time v = 0. This representation simplifies the
representation.

We wish to solve for x, noting that the exponent of
(17) is essentially the derivative of the signal phase with
respect to time. There are several possible methods, but,
since ¥ 1s assumed to be a function of time, the desired
solution should involve as little integration in the time

dimension as possible We present four methods.
Method 1:

We first Fourier transform with respect to @ to get

F oL W) = JAeiw(£+K(ZEV_E-))L’_imCdO), (18)
o

where A = A (W)A, _ ().

?V(C, W) has expected bulge at € + x(2¢€v —-Ez). Since

€ and v are known, X may be recovered.
Method 2:
Normalize the argument by dividing the exponent of

F,(®, W) by . the surface can then be averaged over

frequency and solved for .

K = —l_z_arg{jAei(E+K(2€V—E-))d(.o}—E, (19)
(2ev-¢7) ©
where A = A (w)A, _ (). In this solution, the delay &

must be small. Since the representation is local, the repre-
sentation (19) must be evaluated at v = 0 on each of the

time lattice points.
Method 3:

If we differentiate with respect to ® and average with

respect to @, X may be recovered as

K = ———2arg{JAeia(sH(Zev'eh))dm}—88,(20)
6(2ev—-¢7) ®

where A = Av(w)Av_s((o)Av(m—8)Av_€((o—8).

Method 4:
If we differentiate with respect to v, the Fourier transform

with respect to ® may be computed as

J‘Aeim(x(2£8))e—iw§dw, @n
®

where A = A, (@)A, _ (®)A,_s(®)A, ,_s(®). The

transform (21) has an expected bulge at K(2€d) , from



which K may be easily estimated.

5.0 SIMULATIONS AND CONCLUSIONS
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These data represented one long vector of data consisting
of five segments. Each segment consisted of a linear FM
modulated sine wave, with different chirp rates. The FM
modulating functions of the data were computed using the
methods outlined in section 3.0 and were found to accu-
rately represent the modulating functions which were syn-
thesized.

The FM modulated pulse trains were constructed from
the original modulated sine waves by half-wave rectifying
the function

F(1) = abs(F(1)-0.9)+ (F(1)-0.9), (22)
where F(r) was the original FM modulated sine wave. The
various multi-component methods were applied to verify
that they can recover the modulation. The results presented
in the figures represent an example of the application of
method 2.

It has been verified that the methods using the phase of
the time-varying Fourier transform can be very effective in
extracting signal information which can be extremely diffi-
cult to recover by conventional methods.
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Figure 1 Time-varying phase of 5 signal segments with
different chirp rates.
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Figure 2 Time-varying frequency of 5 signai segments in
figure 1.
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Figure 4 Original instantaneous pulse frequency (upper
trace). Recovered instantaneous pulse frequency (lower
trace.)



