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ABSTRACT 
Spectral phase is a quantity which is normally dis- 

carded in analyzing signals. In this paper, the concept of a 
complex time-frequency representation is presented in 
which the rows are narrow bandpass filters and the col- 
umns are broadband Fourier spectra. Methods are devel- 
oped which exploit the spectral phase of the surface to 
recover the FM modulating function of an FM modulated 
tone and an FM modulated multi-component harmonic sig- 
nal. 

1.0 INTRODUCTION 
In the literature, there are frequently fundamental prin- 

ciples which are loosely stated or which become loosely or 
improperly remembered. These principles then find their 
way back into the literature in the form of theorems and 
results which are much weaker than they should be. An 
example of this is the principle that the Fourier transform. 
It is often stated that the Fourier transform of a rectangu- 
larly windowed signal is the spectrum of the signal con- 
volved with a sine function. What is really meant is that the 

magnitude of the observed spectrum is somehow related to 
the magnitude of the signal spectrum and the magnitude of 
a sine function. Since most spectral processes ignore the 

spectral phase, this loose formulation is generally adequate. 
The purpose of this paper is to describe processes 

which take advantage of the spectral phase to obtain a pro- 
cessing gain or to obtain results which can not be obtained 
from the spectral magnitude alone. Applications of spectral 

phase were first published by the authors in several internal 
publications published in the mid 1980’s (e.g. [3], 141, [5]). 
A major result in these papers was the cross-power spectral 

estimation (CPS) algorithm. In this algorithm, the signal is 
channelized by considering the short-time Fourier trans- 
form as a time-varying process. In this representation, the 

complex sonogram is a bank of narrow-band filters which 

are assumed to be sufficiently narrow to separate the com- 
ponents of a multi-component signal environment. In the 

CPS application, each signal component is assumed to be a 
stationary tone. The tone is detected by applying PM dis- 
crimination or instantaneous frequency transform (IFT) to 

each of the channels. Since the tones are assumed to be sta- 
tionary, the estimates may be averaged in time to produce 
an improved detection procedure. The process admits an 
interpolation method which basically estimates the fre- 
quency of the original tones from the position of the Fou- 
rier transform bulges and the differentiated phase estimate 
provided by the IFT. This process works extremely well, 
and has proven to be superior to normal power-spectrum 
methods for detecting and estimating the frequencies of 
weak tones in noise. 

The process was improved by Umesh and Nelson [6] 
by incorporating the Kay windowing function. With this 
improvement, the CPS algorithm satisfies the Cramer-Rao 
bound and is therefore has some claim to optimally. 

In this paper, we relax the condition of stationarity and 
investigate the problem of spectral phase-based methods 
for parameterizing two signal types. The first of these is a 
single linear FM modulated tone in noise. The second is a 
frequency modulated multi-component signal whose spec- 
trum at any time consists of the union of narrow-band har- 
monic components. The time varying harmonic structure 
assumption would seem to be quite restrictive, but, in fact, 
any signal which is nearly periodic may be expected to 
have such a structure. 

2.0 TIME-VARYING FOURIER TRANSFORM 
We start by defining a time-varying finite Fourier 

transform. We assume that we have a signal s(t), We can 

partition time into a sequence of intervals 

I, = [(n-2)L,(n+$L). (1) 

The time-varying Fourier transform is then given by 

S,(w, W) = IS(t)W(nL-r)e-‘O(‘-nl)dt, (2) 

1” 

where the W is an arbitrary windowing function whose 

support is the interval 
-L L ( 1 1’2 . 

We can rewrite (2) by let- 

ting 



W(t) = W(t)P. 
If we consider the function 

(3) 

S,,(r) = s(t)*‘wt) 1 

where * denotes convolution. we see that 

(4) 

QJI, W) = S,&nL). (5) 

This means that the time-varying Fourier transform (2) 
may be interpreted as the decimated output of an FIR filter 
applied to the original signal. We will refer to the time- 

varying Fourier transform at frequency w as the channel at 

frequency w . With this interpretation of the Fourier trans- 

form, the phase may be predicted and used to recover sig- 
nal parameters. If the Fourier transform in equation (2) is 
discrete and finite. the resulting time-frequency (TF) sur- 
face is sampled on a discrete lattice. If the windowing func- 
tion is the rectangular window. this lattice is maximal in 
the sense that, for each such lattice, the values on that lat- 
tice are a minimal spanning set from which the signal may 
be reconstructed exactly and uniquely by concatenating the 
inverse Fourier transforms over each time lattice point. 

3.0 RECOVERY OF A POLYNOMIAL FM 
MODULATED TONE. 

We now consider a simple polynomial FM modulated 
tone and give two simple algorithms for recovery of the 
FM modulation. A polynomial FM modulated signal may 
be represented as 

The phase of F may be differentiated by the normal delay- 

conjugate-multiply (DCM) discrimination process of mul- 
tiplying the signal by the complex conjugate of the delayed 
signal to produce the recursion 

F(“)(t,E) = F(“-‘)(r)F(“-‘)*(1-E). n = 1.2, . . . , (7) 

where F”‘( t, E) = F(t) . The phase derivatives may then 

be computed as 

(8) 

where 0(t) = arg( F(r)), and o(n) is the nfh time deriv- 

ative. 

For sampled signals, the limit in (8) can not be com- 

puted, but the o,, may be computed if the degree of the 

phase polynomial in (6) is known. The o,* may be com- 

puted recursively by first solving for 

1 
ON = F arg(FtN)(t, E)). 

E’ N! 
(9) 

Since arg( F(“)(t, E)) is a polynomial involving only ok, 

for k = n. . . ., N , o, may be recovered by substituting 

theknownvaluesofE,t,andOk,k=n+l.....N into 

the expression for F(“)(t, E) . In the absence of noise, the 

degree N of the phase polynomial may be estimated since 

the expected value of w,,, calculated by equation (9) is 

independent of t , and therefore constant. 

For linear FM modulated tones (w, = 0, n > 2 ). the 

phase polynomial may be recovered by fixing E and Fou- 

rier transforming the resulting time signal F(‘)(t, E) . The 

resulting spectrum, E”‘(w) has an expected bulge at 

0 = 2EW,. 

4.0 RECOVERY OF AN FM MODULATED 
HARMONIC SIGNAL. 

The assumption in the above discussion is that the sig- 
nal is a modulated single tone. Under this assumption, the 
signal has only one component at any time, and the instan- 
taneous frequency represents the signal’s frequency. If the 
signal has multiple components, the full-band FM discrimi- 
nation process will result in cross terms since all signal 
components mix when the nonlinear process is applied to 
the signal. In this case, the methods of the previous section 

may not be used to recover the FM modulation. 
It is well known that any periodic signal has a har- 

monic spectrum in which the spectral energy is concen- 
trated in the narrow-band harmonics 

Q,, = nQ,, (10) 

where R, is the nrh harmonic, and Q, is the fundamental 

repetition frequency of the periodic signal. If the periodic- 
ity of the signal changes with time. under certain circum- 

stances, the harmonic relationship 

Q,(t) = nQ,(r) (11) 

is satisfied. An example of such a situation is a pulse fre- 

quency modulated (PFM) impulse train 

F(t) = ~Wr, + Wt)> , (12) 

where P(t) is the slowly time-varying pulse period. 

For signals satisfying (I 1). we see that the harmonics 
are phase locked. Indeed, if the fundamental has frequency 

Q,(t) at time r and frequency Q, ( to) + AL2 at time 

t + At then the n “’ harmonic has frequencies nQ, (t) and 

n(Rt (t) + AQ) at time t and f + Ar respectively. If we 



normalize by dividing by the frequency of the n 
th 

compo- 

nent, we have in the limit 

“J’) 
- = w(t), 
Q,,(f) 

(13) 

a function of t alone. We may assume that between the 

harmonics. the expected spectral energy is zero, so the 
spectral phase may be chosen arbitrarily, resulting in the 
general relationship is 

Q’(t) - = w(t). 
Q(t) 

(14) 

We now derive a method for estimating the FM modu- 
lation of a multi-component harmonic signal from the 

phase of the complex TF representation. For simplicity. we 
present here only the case of a linear FM modulated har- 
monic structure. The result generalizes to harmonic struc- 

tures with general phase functions 0(t). The assumption 

that the signal components are linearly chirped is equiva- 
lent that the phase of each component may be represented 
as a polynomial of degree two in time with constant coeffi- 
cients. In general signals are not constant linear chirps for 
all time. In this case, we assume that the signal may be rep- 
resented locally as linear FM chirps. In this case, we may 
assume that the phase coefficients are slowly varying. By 

(14), we can factor an o,, out of the phase function to rep- 

resent the signal as 

F(f) = xAn exp(i(cp,l + w,(t + Kr*))), (15) 

where A,, (p,,, 0, , and K are assumed to be very slowly 

changing functions of time. 

We wish to solve (15) for K , and the function F(t) is 

the observable. By (5). we see that, applying the time-vary- 
ing Fourier transform to (15) results in the condition that 
each channel of the Fourier transform contains at most one 

signal component at any given time, as long as K is not too 

large and the transform has sufficient resolution to resolve 
the signal components. This resolution requirement is a 

joint time-frequency constraint which is subject to a condi- 
tion similar to the Heisenberg uncertainty principle. 

We now apply a DCM process similar to (7) to each 

channel of the time-varying Fourier transform, to get 

FJW, W) = E&o, w,e*,-E(co, W) , (16) 

For each o , Ev( w, W) is assumed to be dependent on 

at most one signal component. so the quadratic surface 

resulting from the DCM process contains no cross-terms. 

Furthermore, each component of ~Tv(w, W) has the local 

form 

y,,(o, W) = A,(o)A~,~,(o)e~~~E+C~2Ev-E2~~, (17) 

where v is the time variable, and A,(o) is an amplitude 

term. which is assumed to be slowly time-varying. Note 
that (17) is a local expansion where the signal representa- 
tion at each point on the time lattice is assumed to be evalu- 

ated at time v = 0. This representation simplifies the 

representation. 

We wish to solve for K, noting that the exponent of 

(17) is essentially the derivative of the signal phase with 
respect to time. There are several possible methods, but, 

since K is assumed to be a function of time, the desired 

solution should involve as little integration in the time 
dimension as possible We present four methods. 
Method 1: 

We first Fourier transform with respect to o to get 

!f,(C, V = IAe 
iO(& + K(2EV - Ei))e-iWcdW, 

(18) 
0 

where A = A,(w)A,-,(a). 

F,(<, W) has expected bulge at E + K(~Ev -E’) . Since 

E and v are known, K may be recovered. 

Method 2: 
Normalize the argument by dividing the exponent of 

F,,( o, W) by w . the surface can then be averaged over 

frequency and solved for K 

1 
K= arg Ae 

1 
I 

(2EV-E*) o 

i(E+K(?EV-E’)&, -E, c19j 

1 

where A = A,(o)A,-, (0) . In this solution, the delay E 

must be small. Since the representation is local, the repre- 

sentation ( 19) must be evaluated at v = 0 on each of the 

time lattice points. 
Method 3: 

If we differentiate with respect to o and average with 

respect to 61, K may be recovered as 

K= 
i6(E+K(*=‘-E2)&,, 

where A = AV(w)Av-E WV,(-~)A,-,(-~). 

Method 4: 

If we differentiate with respect to v , the Fourier transform 

with respect to o may be computed as 

I 
Aeiw(WEG))e-iWCdo 

(21) 
w 

where A = Av(o)Av-E(w)Av_~(~)AV-E-g(o). me 

transform (21) has an expected bulge at ~(2~6)) from 



which K may be easily estimated. 

5.0 SIMULATIONS AND CONCLUSIONS 
Samples of test data were prepared using MATLAB. 

These data represented one long vector of data consisting 

of five segments. Each segment consisted of a linear FM 
modulated sine wave, with different chirp rates. The FM 
modulating functions of the data were computed using the 
methods outlined in section 3.0 and were found to accu- 
rately represent the modulating functions which were syn- 
thesized. 

The FM modulated pulse trains were constructed from 
the original modulated sine waves by half-wave rectifying 
the function 

F(t) = ahs(F(r) -0.9) + (F(r) -0.9), (22) 

where F(t) was the original FM modulated sine wave. The 

various multi-component methods were applied to verify 
that they can recover the modulation. The results presented 
in the figures represent an example of the application of 
method 2. 

It has been verified that the methods using the phase of 
the time-varying Fourier transform can be very effective in 
extracting signal information which can be extremely diffi- 
cult to recover by conventional methods. 
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Figure 2 Time-varying frequency of 5 signal segments in 
figure I. 

Figure 3 Time vs. time plot of 5 segments of FM modu- 

lated pulse trains with different FM rates 

Figure 4 Original instantaneous pulse frequency (upper 
trace). Recovered instantaneous pulse frequency (lower 
trace.) 


