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Abstract 
There are many situations in which it is desirable to 

be able to distinguish spontaneous speech and speech 
which is non-spontaneous. Examples of situations in 
which this problem may arise include forensic evidence 
situations, sorting voice-mail responses from voice-mail 
menus, and automatic segmentation of spontaneous 
responses from prepared questions. The later situation 
can occur if it is desired to create a database of spontane- 
ous data from data which consists of spontaneous dis- 
course responding to prepared prompts. This paper 
outlines and compares three methods for automatically 
classifying spontaneous and non-spontaneous speech and 
presents the cxperimcntal results comparing the perfor- 
mance of the methods. All three methods are based on an 
analysis of the probability distributions of prosodic fca- 
tures extracted from the speech signal. The first method 
uses an expansion of the of the probability distribution in 
terms of the statistical moments. The second method is 
an application of a modifed Hellinger’s method applied 
to histograms of signal amplitude and other speech fea- 
tures. The third method is based on a measure of the non- 
Gaussianity of the data. 

1.0 Introduction. 
There are many situations in which it is desirable to 

bc able to distinguish spontaneous speech from non- 
spontaneous speech. Examples of situations in which this 
problem may arise include forensic evidence situations, 
sorting voice-mail responses from voice-mail menus, and 
automatic segmentation of spontaneous responses and 
prepared questions in a question and answer dialogue. 
The later situation can occur if it is desired to create a 
database of spontaneous data from data which consists of 
spontaneous discourse responding to prepared prompts. 

In this paper we shall describe different means of 
separating non-spontaneous and spontaneous speech. We 
refer to non-spontaneous speech as speech which has 
been recorded from prepared text, or in a situation in 
which the speaker has thought about and prepared the 
content of the utterance. When people speak to intention- 
ally record a message. or when people read from pre- 
pared text, they have knowledge of what they want to say, 
and it normally sounds rehearsed or non-spontaneous. 
Spontaneous speech results when the speaker must spon- 
taneously create the conversation as it is spoken. Sponta- 
neous speech tends to sound much more natural, and less 
“flat” than non-spontaneous speech. This is certainly a 
gray art since a professional actor can speak the same 
lines every night for years and make it sound natural, 

Douglas J.Nclson, John S. Bodenschatz and Heather A. 
McMonagle 

Department of Defcnce 
9800 Savage Road 

Fort George G. Meadc, Maryland 20755 
USA. 

while there are many people who have difliculties com- 
municating, with the result that their speech seems unnat- 
ural. 

In order to separate these two classes of speech one 
has to ask what features can be used effectively. For pur- 
poses of this paper, we assume that spontaneity can be 
determined from the regularity of prosodic speech fca- 
tures. These features include pitch, speaking rate and 
energy dynamics, to name a few. It is reasonable to 
expect features such as these to be able to detect sponta- 
neity. People reading or reciting from prepared text do 
not have to think of more than a few words to trigger the 
entire utterance. On the other hand the person who is 
speaking spontaneously creates the conversation as they 
go. Pauses in spontaneous speech occur as the speaker 
composes and executes the next train of thought. As a 
consequence the speaking rate of the two classes is dif- 
fcrent and there is naturally more/longer dead time in the 
spontaneous speech than non-spontaneous speech. When 
reading text, the tendency is to read the individual words 
or look ahead to the next few words while speaking. In 
either case, the speaking rate tends to be fairly regular 
and the dynamic range of the speech energy tends to be 
low. In spontaneous speech, the dynamic range of energy 
appears to be much greater. Pitch is not explicitly 
addressed in this paper, but one would expect the pitch 
dynamic range (inflection) for spontaneous speech to bc 
much greater than for non-spontaneous speech. Many 
prosodic features arc easily extracted using standard sig- 
nal processing techniques. Energy dynamics and the 
speaking rate are recovered from the energy envelop of 
the signal. Pitch. inflection and other prosodic features 
require a more delicate process. 

The three basic approaches which arc presented 
here are based on modeling the probability density func- 
tions of the prosodic features of spontaneous and non- 
spontaneous speech to devise different distance measures 
for these densities. These distance measures are then 
used to distinguish the speech classes. In the first method, 
the density is expanded into its moments, which arc used 
as coordinates of an Euclidean space. The second method 
is based on Hellinger’s distance measure. This measure is 
actually an Euclidean distance on a Hilbcrt space whose 
elements are essentially probability density functions. In 
the third method, the density functions are modeled as 
symmetrical alpha stable density functions and the value 
of alpha is estimated using maximum likelihood parame- 
ter estimation. Since this problem is a closed set discrim- 
ination problem in which it is assumed that each data 



segment consists of speech which is either spontaneous 
or non-spontaneous, it is sufficient to find a single dcci- 
sion boundary which separates the classes in the feature 
space. The decision boundary is estimated for each of 
the methods, and the methods are applied to approxi- 
matcly 100 utterances of hand segmented test data. Each 
of the discrimination methods is presented and, for each 
of the three approaches an error plot is given to detcr- 
mine its performance. 

2.0 Calculation of the Speech Envelop 
I n designing the speech classification algorithms, 

many potential features were examined. Of all of the fea- 
tures, it was found that by far the best were the statistics 
of the energy envelop of speech. The energy envelop is 
the time sequence which is the instantaneous power of 
the speech signal. The energy envelope of the speech 
waveform is obtained from the analytic signal by taking 
the natural logarithm, exponentially weigthing the real 
part and then low passed tiltcring the result. The proce- 
dure is summarized in the following set of equation. 

Z(/) = .s(t)+jH[S(r)] (1) 
where ~[.rl denotes the Hilbert transform. Eqn (I) can 
be rewritten in the form, 

Z(r) = rr(f)P”‘, (2) 
where cl(r)) is the positive real envelop, and ~(1) is the 
signal phase. The energy envelope of the signal can then 
be computed from the complex log of the analytic signal 

In(Z(r)) = In(cr(f)) + j@ 

by exponentiation to produce 
(3) 

o(r) = Exp(Re(ln(Z(f)))} . (4) 
An example of envelope extraction is shown in Figs (la) 
& (I b) where (la) depicts the speech waveform and ( I b) 
its corresponding envelope. It is this envelope which was 
used to form the density function for the speech classes. 

3.0 Features for spontaneous and non-spontaneous 
speech separation. 

The sections which follow describe the techniques 
used to separate the classes of speech. In all the cases 
described the envelope of the waveform is obtained and 
used as the feature vector. Many features were consid- 
ered, and results were computed using the diffcrcnt fea- 
tures, but the performance using the other features 
proved to be far inferior to the waveform envelop. In 
addition, including additional features in the feature vec- 
tor did not improve the results obtained using the wave- 
form envelop alone. 

In processing the data, the major problem is the 
parameterization of the feature space in such a way that 
the density functions for the different data types can be 
easily parameterizcd and compared. Three processes 
were selected and the performance results of the three 
processes are presented here for comparison. The first 
method is to expand the estimated probability distribu- 
tions in terms of the central moments. The principal 
components of this expansion are then used as a basis of 
comparison of the distributions. In the second method, a 
variation of Hellinger’s method is used. In Hcllingers 
method, probability density functions are imbedded on 
the unit sphere in a Hilbert space by computing the 
square root of the density function. Hilbcrt space tcch- 
niques combined with principal component method may 

then be used to cluster the data. In the third method. the 
distribution is estimated from the sampled data, and the 
distribution is modeled as being symmetric and alpha 
stable. The order CL of the distribution is estimated, and 
used to discriminated the data types. 

It should be noted that in each case, cat-c was taken 
to rescale the signal magnitude so that the average power 
of each speech data set was unity. In doing this, the data 
was normalized so that there was no signal bias to con- 
tribute to the discrimination of the two signal classes. In 
normalizing to unit power, the signals were essentially 
normalized to have zero mean voltage and unit variance. 

3.1 Density function separation by moment 
expansion. 

One method to classify a density function is by 
means of moment expansion of the density function. 
These moments can be used to characterize the density. 
In addition, the density function can be reconstructed as 
a power series whose coefficients are the moments 
P” = E(x”) , where the reconstructed density function is 

G(f) = po+p,t+p2fZ+... . (5) 

The central moments are calculated from the signal 
envelope directly by considering the envelope as a sam- 
pled sequence. The central moments arc then computed 
as, 

(6) 

where TV, denotes the rth moment, L is the mean of the 
sample points, n is the number of data points, and X; 
denote the sample points. 

Finally the normalized central moments can be 
computed from the central moments by normalizing by 
an appropriate power of the second central moment. The 
normalized central moments arc given by [ 31 as 

Y, = P,m2Y2. (7) 

A two dimensional Hilbert subspace was con- 
structed from the data sets using the first and third nor- 
malized central moments, and the data was plotted in 
this space. The moments for each data set were plotted 
on a Cartesian plant, as shown in Fig. (2) with the nor- 
malized first moment oriented in the y direction and the 
normalized third moment oriented in the x direction. As 
it can be seen the spontaneous and non-spontaneous sets 
of data tend to separate in this plane. The question now 
is to determine how well this separation method works. 
To obtain some measure, a threshold level was set for the 
normalized mean direction which was moved from 0.2 to 
2.0 in interval steps of.01. The number of erroneous 
points were counted for each threshold position. The 
results of this procedure was plotted in Fig (3). It can be 
seen from this plot that a minimum error can be obtained 
for a unique threshold level. For the observation data 
used the minimum error was found to be around IO per- 
cent., 

3.2 Modified Hellinger’s method for class separation 
In Hellinger’s method, the probability density func- 

tions of the desired classes are estimated from the train- 
ing data. The probability density functions are estimated 
from each of the data sets in the test data, and the test 
distributions are compared to the training distributions 
by imbedding the space of probability distributions in a 



Hilbert space by computing the square roots of the distri- 
butions[ I]. To reduce the dimension of the problem, the 
data is projected into a principle component space, and 
the decisions are made within this reduced dimension 
space. 

To begin the process, the amplitude envelope of the 
speech waveform is computed and the amplitude distri- 
bution is estimated by computing a histogram of the 
amplitudes. The distribution is normalized by scaling the 
observed signal to make the mean signal amplitude equal 
to one, making the signals invariant to receiver gain. The 
square root of the histogram counts are computed, and 
the resulting square-root distribution is then used as a 
feature vector. These feature vectors arc the square root 
of the probability density function of the envelope of the 
signal. 

To make this process more clear, WC let e, and ez bc 
the amplitude distributions of the spontaneous and non- 
spontaneous data, respectively. WC define the Hellinger 
feature vectors U, and U? by 

ui = &, (8) 

Since probability distributions integrate to I, the I+ 
defined by the condition (8) form a Hilbert space, since 

The ultimate goal is to project the observed feature 
vectors into vector spaces constructed from the training 
data for the two classes. A decision can be made as to 
which class the test data sets belong, using clustering 
techniques. The first step in achieving this goal is to per- 
form an Eigen value decomposition on the auto-covari- 
ancc matrix computed from the training data 

WV” = R, (10) 

where v denotes the unitary Eigcnvector matrix, n is a 
diagonal Eigen value matrix. H denotes the Hermitian 
transpose and R is the covariance matrix defined as,. 

R = UUH. (11) 

The u matrices are concatenated feature vectors of the 
training data as column vectors. 

r 1 
(12) 

WC consider the feature vectors used to make up the 
matrix u to be equal up to small perturbations. The vec- 
tor which represents the “average” vector of each class 
we call the common vector. 

The task is to extract the common feature vector set 
from the training data. This common feature vector is 
extracted by taking the unity column vector in the matrix 
V which relates to the maximum value in the matrix D. 
We denote the common vector which belongs to the 
class of vectors U, as V, and similarly for the class of 
vectors uz WC have a common vector denoted by V, 

The common feature vector for the two different classes 
arc shown in the Fig. (4). As it can be seen, the feature 
vectors arc different for the two different classes of 
speech. 
We now define the projections. From these two feature 
vectors we define a projection vector which is defined as, 

P = v,-vz. (13) 

The corresponding projection operator is then defined as 
the inner product of the observation vector and the pro- 
jection vector as, 

Plu,l = (PI,,). (14) 

This projection operator can be redefined as the common 
feature vector and the perturbation &, which is the dif- 
ference between the common feature vector and obscr- 
vation vector. In this context, the projection operator is 

Plu;l = (v,Ivi)-w~lv;-5;)~ (15) 

As it can be seen from Eqn (l5), the projection of the 
non-spontaneous speech set of data is projected in one 
direction and the spontaneous speech set is projected in 
the opposite direction. The result of the projection of the 
two sets is shown in Fig. (5). 

3.3 Modeling using SAS Densities 
The speech envelope is obviously non-symmetric. 

However, in creating the envelop, the positive choice of 
the sign is somewhat arbitrary. In addition, speech is 
somewhat impulsive. Therefore, it is appropriate to 
model speech features using Symmetric Alpha Stable 
(SAS) densities. The SAS distributions are defined as, 

P(X) = exP(lY.4 7 (16) 
where the parameter u E (0.2 l defines the density func- 
tion of the process. When the value of n = I the density 
function corrcsponds to a Cauchy distribution and when 
u = 2 the density corresponds to a Gaussian density. 
The alpha parameter is the measurcmcnt of the impul- 
siveness of the signal and is invariant to scale. 

To create a pseudo-symmetric distribution from uni- 
polar data, we simply invert every other sample of the 
speech cnvelopc. The distribution of the resulting 
sequence is symmetric and may be modeled as SAS. 
Alpha is estimated using the sample fractile method pre- 
sented by MuCulloch[4], which is an improvement of 
Fama’s method(21. The result plotted in Fig. (7j. 

4.0 Conclusion. 
In this paper we have discussed three different 

approaches for distinguishing between non-spontaneous 
and spontaneous speech. These approaches were the 
moment method, the modified Hellingcr’s method and 
the parameter estimation using SaS densities. For each 
approach the corresponding error plots were given and it 
was found that the minimum error in all cases was 
around IO percent. 
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