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ABSTRACT 

A new implementation of the critically sampled non- 
periodic real Gabor transform (GT) is presented for 
non-separable time-frequency (TF) plane sampling. In 
the propsed implementation, the quincunx sampling is 
used to sample the TF plane. This leads to a well local- 
ized biorthogonal function in both time and frequency. 
It thus overcomes the main problem of the previous 
implementations, which is the non-localization of the 
resultant biorthogonal function. A fast algorithm to 
compute the derived biorthogonal function is proposed. 

1. INTRODUCTION 

Gabor suggested representing a 1-D time signals in 
2-D with time and frequency as coordinates[l]. He 
pointed out that there is a certain elementary signal 
which occupies the smallest possible area in the infor- 
mation diagram. He proved that the modulation prod- 
uct of a harmonic oscillation of any frequency with a 
Gaussian function is the only optimal elementary signal 
concentrated in the joint TF domain. Gabor defined 
two expansions, one for complex signals and the other 
for real signals. There are several approaches to im- 
plement complex GT like frame theory [2], filter-bank 
theory[3], and biorthogonal function theory[4]. Here 
the biorthogonal function theory is used since it gives 
a clear insight of the characteristics of the GT. Unfor- 
tunately, the biorthogonal function for complex GT is 
not localized in both time and frequency. As a result, 
the TF resolution gets worse. This forced the research 
to go to the over-sampling case. We are interested in 
the critical-sampling case which happened to be the 
most compact representation. Besides, it is the only 
case where the coefficients are linearly independent. In 
[5], an implementation of real GT was proposed which 
leads to a concentrated biorthogonal function in time. 
This permits a truncated version of the biorthogonal 
function to be used in near lossless signal analysis and 

synthesis. Its frequency response, however, is not local- 
ized. The above implementations are based on uniform 
separable sampling of the TF plane to obtain discrete 

GT. In [61[71, g a eneralization for the complex GT was 
proposed in which the TF plane is arbitrarily sam- 
pled (not just into rectangular lattice or grid). One of 
these general TF sampling schemes which gives better 
results is the quincrmx-lattice. In this paper we give a 
simple way to implement the non-separable quincunx 
sampling and apply it for real GT. This results in a 
localized biorthogonal function in both time and tie- 
quency domains. We develop the matrix structure for 
the quincunx sampling set and we give a computational 
efficient algorithm to calculate the biorthogonal func- 
tion. In section II, we review the real GT and show 
the problems resulting from the non-localization of the 
biorthogonal function. The proposed method is intro- 
duced in section III. In section IV, an efficient method is 
given to calculate the biorthogonal function. Through- 
out this paper we assume that the discrete signal z(k) 
is of length L, the number of shifts of the modulated 
Gaussian pulse is M, and the number of frequency com- 
ponents in each shift is N. Here, MN = L. 

2. REAL GABOR TRANSFORM AND THE 
BIORTHOGONAL FUNCTION 

Gabor expansions of real continuous signal x(t) is 

z (t) = x x h(t - dt ) [amp ~0s (nt&,) 
m n 

+b,,, sin ((n + .5) tA,)] (1) 

where A, = % , and h(t) is the Gaussian window. In 
[5], discretizatyon and reformulation of (1) led to 

M-l N-l 

z(k) = c h,(k) c a,,,acos ““‘kN+ .5) (2) 
m=O n=O 

where cr = 
d- 

$r for n = 0 and CY = 
T 

$ otherwise, am,n 

is the expansion coefficients, and h,(k) is the discrete 



periodic version of the Gaussian window shifted to the 
center of the mth interval of length N. h,(k) is given 

by 

h,(k) = pqN) f y( k-y+y 
(3) 

According to the biorthogonal theory[8], the coefficients 
a,,,+ can be computed by 

L-l 

a m,n = c x(k)-y*(k - mN)crcos “k(“N’ ‘5) (4) 
k=O 

where r(k) is the biorthogonal function to the analysis 
window function h(k). Equation (4) shows that the GT 
is equivalent to short time Fourier transform (STFT) 
with the y(k) used as the STFT-window. It thus fol- 
lows from the STFT theory that to maintain time and 
frequency resolution, the y(k) has to be also localized 
in both frequency and time. The implementation gives 
y(k) which is localized only in time domain, as in Fig. 1. 
As a result, its frequency resolution is destroyed. This 
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Figure 1: y (k) for real GT, M = N = 8 

prohibits the practical use of real GT in many applica- 
tions and results in an unstable transform. 

In the next section, we will propose a generalization 
of this real GT for general TF plane sampling set. This 
proposed implementation gives a biorthogonal function 
that is localized in both time and frequency. 

3. THE PROPOSED METHOD 

In the previous section, the signal is expanded into win- 
dowed version of the discrete cosine transform (DCT- 
II). DCT-II is a sampled version of the discrete-space 
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Figure 2: Two different Time-Freq. sampling set 

cosine transform C, (w) 

C, (w) = 2 2x (k) cos (w (k + .5)) 
n=o 

(5) 

at w = z where n = 0, 1, . . . , N - 1. Thus, (2) is 
a uniform sampling of the TF plan at points (t, w) = 
((m + .5) N, F) where m = 0, 1, . . . , M - 1 as shown 
in Fig. 2-(a). To implement the quincunx sampling 
set shown in Fig. 2-(b), notice that, for every other 
column, i.e. for odd m, the sampling points are shifted 
upwards by the amount & i.e. the resultant discrete 
cosine transform is a sampled version of the discrete- 

space cosine transform at w = w. This is exactly 
what is known as the discrete cosine transform type IV 
or DCT-IV (see the appendix). Thus, expanding the 
signal according to quincunx sampling gives 

M-l N-l 

x(k) = c h,,Jk) &,,,~cos=(~~~)~+ 
m=O n=O 

77l=WJUl 
M-l N-l 

c h,(k) c a,,,Pcos = (k + t’” + ‘) (6) 
n=O n=O 

mcodd 

Here, we choose to study the nonperiodic discretiza- 
tion of the GT1, and thus neither the signal nor the 
window are assumed to be periodic. To put (6) in ma- 
trix notation, let a be a vectorizd form of the expan- 
sion coefficients am,n definedbyak [a,,al...,aM-llT 

where a, k [a,,~, a,,,,~, . . . , a,,N-l]Tand x be a vec- 
tor containing the discrete signal of length L defined 
byxA[xo,xl.. . ,xM-~]~ where 

X m ii [x (mN) ,x (mN + 1) , . . . , x (mN + N - l)lT 

lFor GT, the assumption of periodicity is a more radical as- 
sumption than for the Fourier transform, as it involves a peri- 
odization of the window function as well as the signal[9]. 



Also, let Cl = [GQ]~~,~ denote the N point DCT-II 
transform matrix with c,,k given by 

and 

CT k diag (CT, Cs ! . . . , CT, Cs) 

Equation (11) is the synthesis transform in matrix no- 
tation. Its inverse, i.e. the analysis transform, is 

&,$ = (Ycos 
7rn (k + .5) 

N 
n , k = 0 ! . . . . , N-l (7) 

a = (CT)-’ H-lx = CH-‘x 

The inverse matrix H-’ has the structure 

and c2 = [Cn,klNxN denote the N point DCT-IV trans- 
form matrix with c,,k given by (12) 

T 

c 
n, 

k = pcos = (n + 3 (k + .5) 
N 

n,k=O,....:N-1 

Based on the DCT-IV properties (appendix-A 
can write 

(8) 
.) , one 

(94 

M-l M-l 

xo = 1 h,(k)CTa, + 1 fh(k)CTam 

r1 
. . . 

rM-I 

-Jr0 ... Jrbf-2 
-r-* . . . FM-3 

Jr-l . . . a-M-4 
. . 

Jr--M+1 - Jr-M+2 . . . -Jr, m=O 
n=odd 

x1 = c h,-r(k)CTJa, - xh,-i(k)CzJa, (9b) with N x N diagonal blocks 
even odd 

x2 = c h,-2(k)CTa, - c h,&k)Ga, PC) rm = diag(1;,(0),%(1), . . . ,-h(N - 1)) 
even odd 

where T,,,(k) k y(k) Ik=k+mN, where y(k) comprises 
the biorthogonal function. For Gaussian window, the 
resulting y(k) is plotted in Fig. 3. This figure shows 
the nice concentration of the resulting y(k) in both time 
and frequency compared with previous work. 

x3 = c hm--3(k)CTJa, + ~hm--3(k)C2Ja, (9d) 
even odd 

where J is the N x N raw exchange matrix 

. . . . 
l- ----1- 

Based on (9), rewriting (6) in matrix form gives us 

HOC;r H.,C, ..’ H.,+,G 
H, JC: -H,JC, “’ -K,,,,JC, 

fWT -H,C2 ... -H.,+,Cz 
H, JC: H,JC, ... K,,,JC, 

.* 

H,.;Jc HMe,JC, . . H,, J& 
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xa=x 

where 

H, k diag(h,(O), h,(l)!. . . ! h,(N - 1)) 

Equation (10) can be written as 

HCTa = x (11) 

Ho H-1 ... H-M+I 

HlJ -HoJ ... -H-.w+zJ 
Ho -HI -H-M+S 

H,J H2J ... fL1+4 J 
. . 

H.v-1 J H,+f-zJ ... H;J 

Figure 3: y (k) for propsed real GT, A4 = N = 8 

where 

H= 

4. CALCULATION OF H-’ 

The matrix H is an MN x MN matrix which is very 
costly to invert. We propose here a method to invert 
it utilizing its special structure. The matrix H is a 
block-Toeplitz matrix with diagonal or anti-diagonal 



blocks. We use row and column permutations to obtain 
a block diagonal matrix with N blocks. Each block is 
of dimension M x M and can be inverted separately as 
follows. Define a permutation MN x MN matrices2 
PI and P2 whose encoding vectors3 pl and ~2: for k = 

0 1”‘) MN - 1, are given by 

where 1 = k mod2 and 1x1 is the integer part of x. 
The matrix P2HP1 is block diagonal with M x M 

blocks D,,n = l,..., N. D, is block-Toeplitz with 
2 x 2 blocks. Efficient methods for inverting block- 
Toeplitz matrices exist [lo] which take c?(M2), or even 
O(M log n/i) as some iterative algorithms claim, i.e. the 
whole inversion process of P2HPl takes O(NM2) or 
0( NM log M). The inverse H-’ is given by 

H-’ = PI (P2 H PJ’ P:! 

and the Gabor coefficient is given by 

a=CPl (P2HP1)-‘Pax 

5. CONCLUSION 

In this paper we have presented an implementation 
of the critically sampled real GT for nonseparable TF 
plane sampling. We showed that the resultant biorthog- 
onal function is well localized in both frequency and 
time domains. An efficient method to calculate the 
biorthogonal function for any type of windows is pre 
sented. 

6. APPENDIX 

The Discrete Cosine Transform type IV (DCT-IV) of an N 
point real sequence I (n) , n = 0, 1, . , N - 1 is defined as: 

N - 1 

X (4 
= PCx(qco6++yn+i) 

VI=0 

N-l 

x(k) 
= PCX(n)cos71(k+~~~(n+~) 

n=O 

where p = m. DCT-IV has found several applications 
in signal processing [ 111. Several algorithms are available in 

*Permutation matrix P is the identit,y matrix with rows 
reordered. 

3Encoding vector p is the vector whose element p(/c) is the 
column index of the sole “1” in /cth row of P. 

the literature for efficient calculation of this transform [12]. 
It is easy to prove the following DCT-IV properties 

N-l 

z(k+N)=-p)X(n)x 
n=o 

cos = ((N - 1 - k) + 4) (n + ;) 
N 

(Al) 

N-l 

x (k + 2N) = -/I c X (n) cos = (’ + ‘;‘” + ‘) (AZ) 
n=O 

N-l 

x(k+3N)=PxX(n)x 
n=O 

cos 
n(W-l--k)+:) (n+i) (A3) 

N 
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