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Abstract - The input autocorrelation matrix for a third 
order (cubic) Volterra adaptive filter for general colored 
Gaussian input processes is analyzed to determine how to 
best formulate a computationally efftcient fast adaptive 
algorithm. When the input signal samples are ordered 
properly within the input data vector, the autocorrelation 
matrix of the cubic filter inherits a block diagonal 
structure, with some of the sub-blocks also having 
diagonal structure. A computationally efftcient adaptive 
algorithm is presented that takes advantage of the spar&y 
and unique structure of the correlation matrix that results 
from this formulation. 

1. INTRODUCTION 

Recently it was shown that for quadratic Volterra 
adaptive filters with Gaussian input signals, a 
computationally efficient adaptive algorithm can be 
developed by exploiting the special structure of the input 
autocorrelation matrix that results from properly ordering 
the input samples within the input data vector [2]. 
However, in many applications it may be necessary to 
include a the third order nonlinear term in the Volterra 
expansion to accurately model realistic nonlinearities. 
This paper develops a computationally efftcient adaptive 
update algorithm for the third order case by extending the 
analysis and development that was previously shown to 
be effective in reducing computational complexity in the 
second order case. 

The third order Volterra filter of finite memory is 
defined as: 

N-l 

1 E:h2(q .m,)x(n-m,b(n- m,)+ (1) 
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where N is the memory length of the filter. The filter 
output is simply the linear combination of its linear input 
signals and the second and the third order cross products 
of its linear input signals. Because of the linear 
relationship between the filter output and the filter 
coefftcients, many LMS-based adaptive algorithms for 
linear adaptive filtering can be used for the third order 
adaptive Volterra filter. By formulating the second and 
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the third order nonlinear terms, the eigenvalue spread of 
the autocorrelation matrix of the third order filter input is 
increased dramatically. Because of this, many LMS 
based linear adaptive algorithms are not very effective in 
increasing the convergence speed. Also, because the 
matrix is non-Toeplitz, it is even more difficult to 
develop a fast adaptive algorithm which generally requires 
calculating. either explicitly or implicitly, the inverse of 
the autocorrelation matrix. 

The third order Volterra filter can be represented in 
vector format as: 

AN = W’Qw(4, (2) 

where the vector X(n) contains the N linear terms of the 
input signal x(n), the second order and the third order 
nonlinear terms generated from the N linear input signals 
of x(n). We define the following data vectors: 

x,(n)=[x(n) x(n- I) ... x(M+1)]7 (3) 

x,(n)=[x2(n) x2(n-1) *** x2(M+1)lT (4) 

x3(n)=[x3(n) X3(+2-1) ... x3(M+I)]T (5) 

x h (n) = [ x(n)x(n - 1) ... x(M+2)x(M+1)]7 (6) 

x3,(n) =[ x(n)x(n- l)x(n- 2) 

.” x( M+3)x(M+2)x(M+l)]’ (7) 

x,q,(n)=[x*(n)x(n-l) x2(n)x(n-1) 

“‘X’(A4+2)XfM +I)]7 (8) 

where M = n - M. It can be shown that the data vectors 
defined in (3.3) - (3.8) contain all the elements required 
for the third order Volterra filter input vector X(n). 
Therefore, X(n) can be represented as: 

X(n)=[ x:‘(n) x:‘(n) x.;w(n) xl’(n) x;‘c(rl) x;,(n)]7‘. 

For zero mean and independently distributed Gaussian 
signal it can be shown that the autocorrelation matrix of 
the third order Volterra filter input equals: 

R, 0 0 

R, = 0 RSY 0 [ 1 (9) 

0 0 Rc 

where &=E[ x2 (n)xl(n)] . R, is defined as: 

R, = E[x,xj] (10) 



where x,(n) =[ x:‘(n) x;(n) xl:.(n) 1“. R, is the block 

diagonal matrix defined as: 

Rc = WC (n)x:(n>l , (11) 

where xc (n) = [ xii.(n) x:,(n) 1’. It is straightforward to 

show that the sub-matrix R, is simply a diagonal matrix. 
Furthermore, the matrix R, is an NxN non-Toeplitz 
matrix, and R, is an (N*+N) x(N’+N) non-Toeplitz matrix. 

The above analysis shows that for white Gaussian 
input signals, the autocorrelation matrix is partially 
decoupled and has a block diagonal matrix. Recalling that 
an uncorrelated Gaussian signal is also independently 
distributed, we might expect that the use of a linear 
transform to decorrelate a colored Gaussian input signal 
will lead to an efficient 3’d order adaptive update 
algorithm with decreased complexity by providing a more 
completely decoupled covariance matrix structure. 
Another important issue is a large difference in eigenvalue 
spreads between autocorrelation matrices of the Volterra 
filter input constructed from colored and white Gaussian 
signals, respectively. We have compared the eigenvalue 
spreads of two matrices under different scenarios. The 
results consistently show that a Volterra filter input 
constructed from a colored Gaussian input has an 
eigenvalue spread that is much higher than that of a filter 
with a white Gaussian input signal. 

Based on the above discussion we propose a structure 
for the 3rd order adaptive Volterra filter that is shown in 
Fig. 1. For a colored Gaussian input signal x(n), x(n) is 
first linearly transformed, and each of the outputs of the 
linear transform is normalized by its own signal power. 
The outputs of power normalization are then used to 
construct the inputs for 3’d order Volterra filter. Assuming 
the linear transform can perfectly decorrelate the input x(n) 
and the power normalization is done appropriately, the 
components of the preprocessed signal becomes i.i.d. 
Gaussian signals. By constructing the inputs of the 
Volterra filter from these preprocessed signals, the input 
autocorrelation matrix of 3rd order Volterra filter is not 
only decoupled, but also its eigenvalue spread is 
decreased dramatically. 

2. QUASI-NEWTON METHODS 

In this section a fast algorithm for the 3’d order 
adaptive Volterra filter is developed based on the quasi- 
Newton method. The algorithm exploits the special 
structure of the 3rd order adaptive Volterra filter introduced 
in last section. In the following derivation, we assume the 
linear transform can perfectly decorrelate the input, so that 
for analysis purposes the input to the Volterra filter can be 
analyzed as an i.i.d. Gaussian signal. 

To achieve fast convergence, the quasi-Newton 
algorithm [2] 

W(n+ 1) = W(n) +,u R-,’ (n)X(n)e(n) (12) 

is used to update the filter coefficients. The main task 
here is to simplify the update of the Kalman gain 
R,‘(n)X(n). As shown in last section, for i.i.d. 

Gaussian input, the matrix Rx is a block diagonal matrix. 
So the updating equation (12) can be decoupled into 

W,(n+ 1) = W,(n) +K’(W,GMN 

W&+U = w,,(n)+CLR;t(n)X*(n)e(n) (13) 

Wc(n+ 1) = WC(n) +pIq’(n)Xc(n)e(n) 

Because the autocorrelation matrices R,(n), Rsq(n), and 
R(n) have different structures, the Kalman gain vector 
associated with each of these autocorrelation matrices 
should be updated differently. The basic adaptive 
algorithm based on the quasi-Newton method for the 3’d 
adaptive Volterra filter can be summarized as: 

. Step 0: Initialization (n=O) 

W(n) = [w;(n) w;q(n) w,T(n) IT = 0 
. Step 1: 

s(n) = TX(~) 

o;,,(n)=acr;,(n-I)+(l-a)q12(n) fori=Oto N-i 

x,(n)=q,(n)/o,,(n) firi=OtoN-1 

. Step 2: Construct 3rd order Volterra filter input, 
x,(n), x2(n), and x,(n) from xl(n). 

X(n) = [x;(n) x;(n) x,T(n>lT = 0 

W(n) = [w:(n) w:,(n) w:(n) IT 
e(n) = d(n)- w”(n)X(n) 

. Step 3: 
(1) Update R;‘(n)X, (n) and w,(n). 

(2) Update R;; (n)x, cn) and w200 

(3) Update Rc’(n)Xc(n) and w,(n). 

. Step 4: n=n+l, golo Step I. 

The main task in updating the filter coefftcients is to 
update the three Kalman gain vectors listed in Step 3. 
Since R, is simply a diagonal matrix, the updating 
equation for W,(n) becomes 

1 
wE.k(~+~)=y.,(~)+P- 

@,k 
Xc,k W4~) 3 (14) 

where of, = E[xz, (n)] is the power estimate of the k-th 

element of x,(n). If the input signal x(n) is stationary, 
R,(n) consists of only two numerical values, one which 
appears along the main diagonal, and one which defines 
the off diagonal elements. An efftcient algorithm for 
updating the Kalman gain vector R;;(n)&(“) has been 

developed in [2] for the 2”d order adaptive Volterra filter. 
The algorithm can be directly applied to update the 
Kalman gain for 3ti order adaptive Volterra filter. 

The matrix R, is an (N’+N)x(N*+N) non-Toeplitz 
matrix. It requires O(Nq multiplications to update the 



Kalman gain vector R;‘(n)X, (n) if traditional methods 

of calculating matrix inverse are utilized. The fast quasi- 
Newton algorithm, which utilizes the Toeplitz structure of 
the autocorrelation matrix, is simply not applicable here. 
The Conjugate Gradient method has been used recently 
[3] as an updating algorithm for the Kalman gain vector 
in adaptive filtering. The algorithm does not exploit any 
special structure of the autocorrelation matrix in 
calculating the Kalman gain, so it can be effectively 
applied to the nonlinear adaptive filter where the input 
autocorrelation matrix is non-Toeplitz. 

2.1 The Conjugate Gradient Algorithm 

The conjugate gradient algorithm is an iterative search 
method to minimize the quadratic cost function: 

V(w)=+w’Rw-w’b, (1% 

where R is an NxN symmetric positive definite matrix, 
and w and b are Nxl vectors. The optimum solution of 
the quadratic problem is: 

w = R-lb (16) 

The conjugate gradient algorithm can be used to calculate 
the Kalman gain vector. In searching for the optimum 
solution at each iteration, the conjugate gradient 
algorithm searches through a set of N linearly independent 
direction vectors, po, p,, . . ., pN.1, which are R-conjugate 
and linearly independent. Because these direction vectors 
span RN and the range of the matrix R, the solution of the 
optimization problem (15) w’, can be achieved after at 
most N iterations and can be expressed as the linear 
combination of the N direction vectors: 

* 
w = crop, +a,p, + .” +a.-,p,~-, (17) 

It is demonstrated in [4] that the conjugate gradient 
algorithm can converge to the optimum solution faster if 
the matrix R is well conditioned or is a lower rank 
perturbation to identity matrix. For a linear system, the 
preconditioned conjugate gradient method tries to increase 
the convergence rate of the algorithm. It applies the 
normal conjugate gradient algorithm to solve the linear 
system equation: 

f&*=fJ (18) 

where ii = CA RC-’ , ti=cW, and b=C-‘b. C is a 
symmetric positive definite matrix. It can be observed 

that if C is chosen such that the matrix fi is well 
conditioned, then the conjugate gradient algorithm will 
take less iterations to converge to the optimum solution 
$‘c = R-‘l; . The preconditioned conjugate gradient 
algorithm can be found in [4]. From the algorithm it can 
be seen that the preconditioner, M = C2, should also be 
chosen such that it allows efftcient computation of 
zk =M-‘r,. 

2.2 Preconditioned Conjugate Gradient Algorithm 
For 3’d Order Adaptive Volterra Filter 

For the third order adaptive Volterra filter, the 
autocorrelation matrix R,(n) is non-Toeplitz structured. 
Most preconditioners developed previously do not 
perform well here as these preconditioners are developed 
for the linear system l&v = b where R has Toeplitz 
structure. One intuitive way of constructing a 
preconditioner C is to choose M = C* to be close to R. 
This can be justified by the Incomplete Cholesky 
preconditioner design [4]. In this method the 
preconditioner is chosen as M=HeHT=C2 where H is a 

matrix with certain sparse structure and is close to the 
Cholesky factor G of the matrix R. That is R and G 
satisfy: 

R=G*G7 (19) 
The better the matrix H approximates G, the closer the 

transformed matrix R = C’RC-’ will be to the identity 
matrix. This shows that a good preconditioner can be 
chosen to approximate the matrix R. 

For the third order adaptive Volterra filter, the 
autocorrelation matrix R, is represented as: 

I 

Eb,x:‘l E[x,x:l E[x,x::.,,l 
R, = E[x,x;‘] &,+-I E[x,x:c,,l 

I 

(20) 

E[x2c,cx:l E&.x:‘1 E[x~~,~x;,J 

We want to use the sub-matrices along the diagonal of R, 
to build the preconditioner. The idea is to retain as many 
characteristics of R as possible, while at the same time, 
making it easy to calculate the inverse of the M. In this 
paper, two preconditioners are used to calculate 
R ;‘(n)x, (n) for 3rd order adaptive Volterra filter. The 

first has the following format: 

M, = E[x3x:] E[x,x:] 

; 

m,x: 1 m,x; 1 0 

i 

0 . . . m2clcXLkl 1 

(21) 

This preconditioner is simply the autocorrelation matrix 
Rt but with its off diagonal elements E[x,x~~,,] and 

E[x~x:;,,~] set to zeros. For white Gaussian input 

signals, the sub-matrix in the upper-left comer of the 
above matrix is: 

[ 

E[x,x;] E[x,x:‘] 

E[x,x:‘] E[x,x:‘] I 

Since its sub-matrices E[x,xT], E[x,xr] and E[x,xr] 

are diagonal matrices, it is computationally simple to 
calculate the inverse of above sub-matrix. The sub-matrix 



E[x 2clcxLcl OfM ’ is a non-Toeplitz matrix, so it is 

still computationally intensive to calculate its inverse. 
The second preconditioner used in this paper is a 

simplified version of the first preconditioner. Define the 
signal vector x2&n) as: 

x,,,,(~)=[x:;,o(~),x:c,,(n), -,X:,,,,!-, m 7 

where x2&n) is defined as: 

x2Jn) = x’(n-iI x(n) x(n- I) .*. 

.e.x(n-i+l)x(n-i-l)...x(n-N+l)] 

The second preconditioner is defined as: 

&$I .&,x:1 0 . 
E[x3$1 m3xr1 

0 

M2 = 0 ~[x,,,,,d..ol ..’ 

0 . . . 0 

0 0 E[x T . . . 
2c.N-IX2c,N-I I- 

Apparently only the N sub-autocorrelation matrices along 
the diagonal of E[x~~,~x~~,~] are used as part of the 

preconditioner. For zero mean white Gaussian input 
signal, the above matrix can be expressed as: 

M, = 

L 

E[x,x;l &,x;l 

m,x;1 ax,x;1 
o ... 0 

0 E[x”] 0 i 

0 . . . 0 

0 . . . 0 E[x”] 

(21) 

So this preconditioner is a block diagonal matrix. The 
first matrix along the diagonal is a tridiagonal matrix. 
The second matrix is simply a diagonal matrix. So the 
calculation of the inverse of M2 is very much simplified. 

3. COMPUTER EXPERIMENTS 

Computer simulation was used to evaluate the 
performance of the 3’d order Volterra adaptive filtering 
algorithm introduced here. The filter is used to identify a 
3’ order nonlinear system. The input to the system is a 
colored Gaussian input signal generated using a 71h order 
lowpass filter. At each update instance one iteration, two 
iterations, or the full number of iterations of the 
preconditioned conjugate gradient algorithm is applied in 
calculating R ;’ (n)x, (n) , using the second preconditioner 

described in the previous section. Figure 2 shows the 
experimental results, where, for comparison, the learning 
curve of the LMS filter is included. From the results it is 
seen that the new adaptive algorithm shows dramatic 
improvement in convergence rate in comparison to the 
LMS algorithm. The results also illustrate that the 
chosen preconditioner chosen is very effective in 
improving the convergence rate. 
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Fig. 1 Block diagram of the third order Volterra filter. 
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Fig. 2 Experimental evaluation of the new algorithm. 


