
COMPUTATIONALLY EFFICIENT ALGORITHMS
FOR THIRD ORDER ADAPTIW VOLTERRA FILTERS

Xiaohui Li and W. Kenneth Jenkins
Dept. of Electrical and Computer Engr. and

The Coordinated Science Laboratory
University of Illinois

Urbana, IL

Abstract - The input autocorrelation matrix for a third
order (cubic) Volterra adaptive filter for general colored
Gaussian input processes is analyzed to determine how to
best formulate a computationally efftcient fast adaptive
algorithm. When the input signal samples are ordered
properly within the input data vector, the autocorrelation
matrix of the cubic filter inherits a block diagonal
structure, with some of the sub-blocks also having
diagonal structure. A computationally efftcient adaptive
algorithm is presented that takes advantage of the spar&y
and unique structure of the correlation matrix that results
from this formulation.

1. INTRODUCTION

Recently it was shown that for quadratic Volterra
adaptive filters with Gaussian input signals, a
computationally efficient adaptive algorithm can be
developed by exploiting the special structure of the input
autocorrelation matrix that results from properly ordering
the input samples within the input data vector [2].
However, in many applications it may be necessary to
include a the third order nonlinear term in the Volterra
expansion to accurately model realistic nonlinearities.
This paper develops a computationally efftcient adaptive
update algorithm for the third order case by extending the
analysis and development that was previously shown to
be effective in reducing computational complexity in the
second order case.

The third order Volterra filter of finite memory is
defined as:

N-l

1 E:h2(q .m,)x(n-m,b(n- m,)+ (1)
1111 =“mI =o

N-l N-l N-l

c c Ch,(m, ,m,,m,)x(n-m,>x(n-m,)x(n-m,)
ml=Om*=ml tftj=m

where N is the memory length of the filter. The filter
output is simply the linear combination of its linear input
signals and the second and the third order cross products
of its linear input signals. Because of the linear
relationship between the filter output and the filter
coefftcients, many LMS-based adaptive algorithms for
linear adaptive filtering can be used for the third order
adaptive Volterra filter. By formulating the second and

Charles W. Therrien
Dept. of Electrical and Computer Engr.

Naval Postgraduate School
Monterey, CA

the third order nonlinear terms, the eigenvalue spread of
the autocorrelation matrix of the third order filter input is
increased dramatically. Because of this, many LMS
based linear adaptive algorithms are not very effective in
increasing the convergence speed. Also, because the
matrix is non-Toeplitz, it is even more difficult to
develop a fast adaptive algorithm which generally requires
calculating. either explicitly or implicitly, the inverse of
the autocorrelation matrix.

The third order Volterra filter can be represented in
vector format as:

AN = W’Qw(4, (2)

where the vector X(n) contains the N linear terms of the
input signal x(n), the second order and the third order
nonlinear terms generated from the N linear input signals
of x(n). We define the following data vectors:

x,(n)=[x(n) x(n- I) ... x(M+1)]7 (3)

x,(n)=[x2(n) x2(n-1) *** x2(M+1)lT (4)

x3(n)=[x3(n) X3(+2-1) ... x3(M+I)]T (5)

x h (n) = [x(n)x(n - 1) ... x(M+2)x(M+1)]7 (6)

x3,(n) =[x(n)x(n- l)x(n- 2)

.” x(M+3)x(M+2)x(M+l)]’ (7)

x,q,(n)=[x*(n)x(n-l) x2(n)x(n-1)

“‘X’(A4+2)XfM +I)]7 (8)

where M = n - M. It can be shown that the data vectors
defined in (3.3) - (3.8) contain all the elements required
for the third order Volterra filter input vector X(n).
Therefore, X(n) can be represented as:

X(n)=[x:‘(n) x:‘(n) x.;w(n) xl’(n) x;‘c(rl) x;,(n)]7‘.

For zero mean and independently distributed Gaussian
signal it can be shown that the autocorrelation matrix of
the third order Volterra filter input equals:

R, 0 0

R, = 0 RSY 0 [1 (9)

0 0 Rc

where &=E[x2 (n)xl(n)] . R, is defined as:

R, = E[x,xj] (10)

where x,(n) =[x:‘(n) x;(n) xl:.(n) 1“. R, is the block

diagonal matrix defined as:

Rc = WC (n)x:(n>l , (11)

where xc (n) = [xii.(n) x:,(n) 1’. It is straightforward to

show that the sub-matrix R, is simply a diagonal matrix.
Furthermore, the matrix R, is an NxN non-Toeplitz
matrix, and R, is an (N*+N) x(N’+N) non-Toeplitz matrix.

The above analysis shows that for white Gaussian
input signals, the autocorrelation matrix is partially
decoupled and has a block diagonal matrix. Recalling that
an uncorrelated Gaussian signal is also independently
distributed, we might expect that the use of a linear
transform to decorrelate a colored Gaussian input signal
will lead to an efficient 3’d order adaptive update
algorithm with decreased complexity by providing a more
completely decoupled covariance matrix structure.
Another important issue is a large difference in eigenvalue
spreads between autocorrelation matrices of the Volterra
filter input constructed from colored and white Gaussian
signals, respectively. We have compared the eigenvalue
spreads of two matrices under different scenarios. The
results consistently show that a Volterra filter input
constructed from a colored Gaussian input has an
eigenvalue spread that is much higher than that of a filter
with a white Gaussian input signal.

Based on the above discussion we propose a structure
for the 3rd order adaptive Volterra filter that is shown in
Fig. 1. For a colored Gaussian input signal x(n), x(n) is
first linearly transformed, and each of the outputs of the
linear transform is normalized by its own signal power.
The outputs of power normalization are then used to
construct the inputs for 3’d order Volterra filter. Assuming
the linear transform can perfectly decorrelate the input x(n)
and the power normalization is done appropriately, the
components of the preprocessed signal becomes i.i.d.
Gaussian signals. By constructing the inputs of the
Volterra filter from these preprocessed signals, the input
autocorrelation matrix of 3rd order Volterra filter is not
only decoupled, but also its eigenvalue spread is
decreased dramatically.

2. QUASI-NEWTON METHODS

In this section a fast algorithm for the 3’d order
adaptive Volterra filter is developed based on the quasi-
Newton method. The algorithm exploits the special
structure of the 3rd order adaptive Volterra filter introduced
in last section. In the following derivation, we assume the
linear transform can perfectly decorrelate the input, so that
for analysis purposes the input to the Volterra filter can be
analyzed as an i.i.d. Gaussian signal.

To achieve fast convergence, the quasi-Newton
algorithm [2]

W(n+ 1) = W(n) +,u R-,’ (n)X(n)e(n) (12)

is used to update the filter coefficients. The main task
here is to simplify the update of the Kalman gain
R,‘(n)X(n). As shown in last section, for i.i.d.

Gaussian input, the matrix Rx is a block diagonal matrix.
So the updating equation (12) can be decoupled into

W,(n+ 1) = W,(n) +K’(W,GMN

W&+U = w,,(n)+CLR;t(n)X*(n)e(n) (13)

Wc(n+ 1) = WC(n) +pIq’(n)Xc(n)e(n)

Because the autocorrelation matrices R,(n), Rsq(n), and
R(n) have different structures, the Kalman gain vector
associated with each of these autocorrelation matrices
should be updated differently. The basic adaptive
algorithm based on the quasi-Newton method for the 3’d
adaptive Volterra filter can be summarized as:

. Step 0: Initialization (n=O)

W(n) = [w;(n) w;q(n) w,T(n) IT = 0
. Step 1:

s(n) = TX(~)

o;,,(n)=acr;,(n-I)+(l-a)q12(n) fori=Oto N-i

x,(n)=q,(n)/o,,(n) firi=OtoN-1

. Step 2: Construct 3rd order Volterra filter input,
x,(n), x2(n), and x,(n) from xl(n).

X(n) = [x;(n) x;(n) x,T(n>lT = 0

W(n) = [w:(n) w:,(n) w:(n) IT
e(n) = d(n)- w”(n)X(n)

. Step 3:
(1) Update R;‘(n)X, (n) and w,(n).

(2) Update R;; (n)x, cn) and w200

(3) Update Rc’(n)Xc(n) and w,(n).

. Step 4: n=n+l, golo Step I.

The main task in updating the filter coefftcients is to
update the three Kalman gain vectors listed in Step 3.
Since R, is simply a diagonal matrix, the updating
equation for W,(n) becomes

1
wE.k(~+~)=y.,(~)+P-

@,k
Xc,k W4~) 3 (14)

where of, = E[xz, (n)] is the power estimate of the k-th

element of x,(n). If the input signal x(n) is stationary,
R,(n) consists of only two numerical values, one which
appears along the main diagonal, and one which defines
the off diagonal elements. An efftcient algorithm for
updating the Kalman gain vector R;;(n)&(“) has been

developed in [2] for the 2”d order adaptive Volterra filter.
The algorithm can be directly applied to update the
Kalman gain for 3ti order adaptive Volterra filter.

The matrix R, is an (N’+N)x(N*+N) non-Toeplitz
matrix. It requires O(Nq multiplications to update the

Kalman gain vector R;‘(n)X, (n) if traditional methods

of calculating matrix inverse are utilized. The fast quasi-
Newton algorithm, which utilizes the Toeplitz structure of
the autocorrelation matrix, is simply not applicable here.
The Conjugate Gradient method has been used recently
[3] as an updating algorithm for the Kalman gain vector
in adaptive filtering. The algorithm does not exploit any
special structure of the autocorrelation matrix in
calculating the Kalman gain, so it can be effectively
applied to the nonlinear adaptive filter where the input
autocorrelation matrix is non-Toeplitz.

2.1 The Conjugate Gradient Algorithm

The conjugate gradient algorithm is an iterative search
method to minimize the quadratic cost function:

V(w)=+w’Rw-w’b, (1%

where R is an NxN symmetric positive definite matrix,
and w and b are Nxl vectors. The optimum solution of
the quadratic problem is:

w = R-lb (16)

The conjugate gradient algorithm can be used to calculate
the Kalman gain vector. In searching for the optimum
solution at each iteration, the conjugate gradient
algorithm searches through a set of N linearly independent
direction vectors, po, p,, . . ., pN.1, which are R-conjugate
and linearly independent. Because these direction vectors
span RN and the range of the matrix R, the solution of the
optimization problem (15) w’, can be achieved after at
most N iterations and can be expressed as the linear
combination of the N direction vectors:

*
w = crop, +a,p, + .” +a.-,p,~-, (17)

It is demonstrated in [4] that the conjugate gradient
algorithm can converge to the optimum solution faster if
the matrix R is well conditioned or is a lower rank
perturbation to identity matrix. For a linear system, the
preconditioned conjugate gradient method tries to increase
the convergence rate of the algorithm. It applies the
normal conjugate gradient algorithm to solve the linear
system equation:

f&*=fJ (18)

where ii = CA RC-’ , ti=cW, and b=C-‘b. C is a
symmetric positive definite matrix. It can be observed

that if C is chosen such that the matrix fi is well
conditioned, then the conjugate gradient algorithm will
take less iterations to converge to the optimum solution
$‘c = R-‘l; . The preconditioned conjugate gradient
algorithm can be found in [4]. From the algorithm it can
be seen that the preconditioner, M = C2, should also be
chosen such that it allows efftcient computation of
zk =M-‘r,.

2.2 Preconditioned Conjugate Gradient Algorithm
For 3’d Order Adaptive Volterra Filter

For the third order adaptive Volterra filter, the
autocorrelation matrix R,(n) is non-Toeplitz structured.
Most preconditioners developed previously do not
perform well here as these preconditioners are developed
for the linear system l&v = b where R has Toeplitz
structure. One intuitive way of constructing a
preconditioner C is to choose M = C* to be close to R.
This can be justified by the Incomplete Cholesky
preconditioner design [4]. In this method the
preconditioner is chosen as M=HeHT=C2 where H is a

matrix with certain sparse structure and is close to the
Cholesky factor G of the matrix R. That is R and G
satisfy:

R=G*G7 (19)
The better the matrix H approximates G, the closer the

transformed matrix R = C’RC-’ will be to the identity
matrix. This shows that a good preconditioner can be
chosen to approximate the matrix R.

For the third order adaptive Volterra filter, the
autocorrelation matrix R, is represented as:

I

Eb,x:‘l E[x,x:l E[x,x::.,,l
R, = E[x,x;‘] &,+-I E[x,x:c,,l

I

(20)

E[x2c,cx:l E&.x:‘1 E[x~~,~x;,J

We want to use the sub-matrices along the diagonal of R,
to build the preconditioner. The idea is to retain as many
characteristics of R as possible, while at the same time,
making it easy to calculate the inverse of the M. In this
paper, two preconditioners are used to calculate
R ;‘(n)x, (n) for 3rd order adaptive Volterra filter. The

first has the following format:

M, = E[x3x:] E[x,x:]

;

m,x: 1 m,x; 1 0

i

0 . . . m2clcXLkl 1

(21)

This preconditioner is simply the autocorrelation matrix
Rt but with its off diagonal elements E[x,x~~,,] and

E[x~x:;,,~] set to zeros. For white Gaussian input

signals, the sub-matrix in the upper-left comer of the
above matrix is:

[

E[x,x;] E[x,x:‘]

E[x,x:‘] E[x,x:‘] I

Since its sub-matrices E[x,xT], E[x,xr] and E[x,xr]

are diagonal matrices, it is computationally simple to
calculate the inverse of above sub-matrix. The sub-matrix

E[x 2clcxLcl OfM ’ is a non-Toeplitz matrix, so it is

still computationally intensive to calculate its inverse.
The second preconditioner used in this paper is a

simplified version of the first preconditioner. Define the
signal vector x2&n) as:

x,,,,(~)=[x:;,o(~),x:c,,(n), -,X:,,,,!-, m 7

where x2&n) is defined as:

x2Jn) = x’(n-iI x(n) x(n- I) .*.

.e.x(n-i+l)x(n-i-l)...x(n-N+l)]

The second preconditioner is defined as:

&$I .&,x:1 0 .
E[x3$1 m3xr1

0

M2 = 0 ~[x,,,,,d..ol ..’

0 . . . 0

0 0 E[x T . . .
2c.N-IX2c,N-I I-

Apparently only the N sub-autocorrelation matrices along
the diagonal of E[x~~,~x~~,~] are used as part of the

preconditioner. For zero mean white Gaussian input
signal, the above matrix can be expressed as:

M, =

L

E[x,x;l &,x;l

m,x;1 ax,x;1
o ... 0

0 E[x”] 0 i

0 . . . 0

0 . . . 0 E[x”]

(21)

So this preconditioner is a block diagonal matrix. The
first matrix along the diagonal is a tridiagonal matrix.
The second matrix is simply a diagonal matrix. So the
calculation of the inverse of M2 is very much simplified.

3. COMPUTER EXPERIMENTS

Computer simulation was used to evaluate the
performance of the 3’d order Volterra adaptive filtering
algorithm introduced here. The filter is used to identify a
3’ order nonlinear system. The input to the system is a
colored Gaussian input signal generated using a 71h order
lowpass filter. At each update instance one iteration, two
iterations, or the full number of iterations of the
preconditioned conjugate gradient algorithm is applied in
calculating R ;’ (n)x, (n) , using the second preconditioner

described in the previous section. Figure 2 shows the
experimental results, where, for comparison, the learning
curve of the LMS filter is included. From the results it is
seen that the new adaptive algorithm shows dramatic
improvement in convergence rate in comparison to the
LMS algorithm. The results also illustrate that the
chosen preconditioner chosen is very effective in
improving the convergence rate.

ACKNOWLEDGMENT

This work is supported by the Joint Services Electronics
Program (JSEP) under contract number NO001 4-96-J-O 129.

REFERENCES

[I] X. Li, W. K. Jenkins, and C. W. Therrien, “Algorithms for
improved performance in adaptive polynomial tillers with
Gaussian input signals,” Proc. of the Asilomar Conference
on Signals, Systems, and Computers, Pacific Grove, CA,
November 1996.

[2] D. Marshall and W. Jenkins, “A fast quasi-Newton
adaptive filtering algorithm,” IEEE Trans. Signal Proc., Vol.
40, no. 7, pp. 1652-1662, Jul. 1992.

[3] A. W. Hull, “Orthogonalization techniques of Toeplitz
filters,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, Urbana, IL. 1994.

[4] G. H. Golub, C. F. Van Loan, Matrix Computations, 2”d
ed., Johns Hopkins Univ. Press, Baltimore, MD.

Linear Transform

I Third Order Adaptive Filter

/
/

Fig. 1 Block diagram of the third order Volterra filter.

50 I I I I
8

-2mL
I I

0 am 4cm mm KQO imm
Number of iterations

Fig. 2 Experimental evaluation of the new algorithm.

