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ABSTRACT 

In this paper, a new set of difference equations is derived for 

convergence analysis of adaptive filters using the Sign-Sign 

Algorithm with Gaussian input reference and additive Gaussian 

noise. The analysis is based on the assumption that the tap 

weights are jointly Gaussian distributed. Residual mean squared 

error after convergence and simpler approximate difference 

equations are further developed. Results of experiment exhibit 

good agreement between theoretically calculated convergence 

and that of simulation for a wide range of parameter values of 

adaptive filters. 

I. INTRODUCTION 

Sign-Sign Algorithm is said to be a member of a “family” of the 

LMS Algorithm, in which non-linearities are introduced into the 

correlation multiplier for the stochastic gradient tap weight 

adaptation. The algorithm makes use of the Signum of the input 

reference signal in addition to taking the polarity of the error 

signal, thus requiring only one-bit multiplication or logical EX- 

OR function. Like his “brother” Sign Algorithm, the Sign-Sign 

Algorithm is also attractive for robustness against disturbances. 

Although the Sign-Sign Algorithm linds many application 

areas, e.g., adaptive predictive coding [I], there seem to be a 

limited number of papers which analyze the algorithm [2]-[5]. 

[5] deals with convergence analysis of the Sign-Sign Algorithm 

based on the assumption that the input reference and the error 

signals are jointly Gaussian distributed. 

In this paper, we develop a new set of difference equations for 

repetitive calculation of the mean squared error (MSE) 

convergence of adaptive filters using the Sign-Sign Algorithm 

with Gaussian input reference and Gaussian additive noise. In 

the analysis it is assumed that the tap weights are jointly 

Gaussian distributed along their adaptation process [6] (71. 

In Section II difference equations for the mean and the 

covariance of “tap weight error” vector are derived, involving 

integrals of probability generating functions. Section III gives a 

theoretical expression for the residual MSE after convergence. In 

Section IV, it is shown that approximation to the equations 

derived in Section II yields simpler difference equations that 

coincide with the formulae obtained in [5]. In Section V, 

results of experiment with some examples are given, comparing 

the theoretically calculated convergence with that of simulation. 

Section VI concludes the paper. 

II. ANALYSIS 

The tap weight update equation for the Sign-Sign Algorithm is 

given by 

~2~“) =~(“)+a c sgn(e, +v .)sgn(a(“)) 

where 

(1) 

n time instant, c(n) tap weignt vector (N taps), 

fz(“) = [a, ,.. .., an-~+, 3’ input reference vector, 

en error, v, additive noise, aC step size, 

sgn ( l ) Signum function, and ( l )’ transpose. 

Let “tap weight error” vector be defined by 8(“) = h-c(“), 

where h is the response vector of the unknown system in system 

identification application. Then we have 

B(“+‘)= f9 (n)-a c sgn(e, +v,)sgn(a(“)) (2) 

and 

e 
n 

= a w(l) (ml 
(3) 

For the subsquent analysis, the following Assumptions are 

made. 

(A) Input reference signal a. is a stationary Gaussian 

process, colored in general, with zero mean, 

covariance ~a = ~[a(“ln(“)‘] and variance bUz, 

(R) Addittve notse v n is Gaussian with variance CJ,.’ 1 

(C) Tap weight error 4”) 1s jointly Gaussian distributed 

wirh mean nz(“) = E[B+)] and covariunce 

R(“) = j(BI”) -,,&“))(&) -,,&n’)r],and 

(D) Input reference .(n) and tap weight error 8’“) are 

statistically independent. 

From (2) and (3). under the Assumptions (A) through (D) 

above, we can derive the following difference equations. 

mb+‘) = ,b) --Q c /p 
(4) 

and 



Rw) = R(4 _ a c u(4 + Uw ) + Q c’( Ta - p(‘)p(“)‘). (5) 

where 

p(“) = E 
[ 

sgn(e. +v .)sgn a(“) ( )I , (6) 

U(“) = E sgn(e,, + v .)sgn &) 
[ ( I( 

8(“) - rn(‘) 
r 

)I 9 (7) 

and 

Ta=E[sgn(a’“‘)sgn(~‘“1)T]=(2/n)rin-’(Ralo,~).(8) 

The MSE is calculated as 

,$) = E [ en’] = rr{Ra (m%(“)T + Rcn))}, (9) 

where rr( l ) is trace of matrix. 

Now, with the Assumptions (B) through (D), given the value 

of a (“I, y = e, + v, = a k)r d”) + v. is a Gnussiun random 

variable, and y and 8(“) are jointly Gaussian disribured. 
Then, from (6) and (7), we find 

p’“‘=(Iln)I__(jlo)E.[sgn(u)~y(~)]d~, (10) 

Ub) = W(“) R(“) (11) 

and 

W(“) =(I/n) j-,E.[sgn(a)ar@u(o)]dw , (12) 

where 

CD r (w) = exp( - j OJ rr~(“)~a - d u ‘R(“)a ! 2) 

xexp 
( 
-or2 or?/2 

1 
(13) 

is the probability generating function of J , E, [ l ] denotes 

expectation with respect to a , and j = fi . 

Using the Gaussian probability density function PA(U) of 

a , we calculate 

qsgn (a.-,) 0 y (lo)] = j~~-...j~,-.wn (a.-,) 0 Y (o)pA(u)du 

= 2erf 
I 

- j w p k(“’ (co)/&qij} 

x 4”) (0) exp (- cr,.’ 0’ 12) (14) 

and 

E.[sgn (a.4 )a.-,@ y(o)] = J---...ISWssgn (~3.-k)a~-~ 

x @ Y (w)p,4 (up 

where 

=(j/w)aE,[sgn(a.-i)@r(w)] ldm.(n),(15) 

u’“‘(w) = exp[- w2 m (“)’ ,(n)(w)12},Ji~, (16) 

ptn) (w) = D(“) (w) mtn) 

=[ p,P(lo),p I(‘++..$ *v-P(w)] r, (17) 

D(“) (w) = A(“) (w) -’ Ra =[ D~.(“J (co)] , (18) 

A(“)(w)= I+& Ra R(“) , (19) 

and 

e@(x)= (I /JT;;)Jexp(- f2 12)df. cm 

From (10) with (14) substituted, one can calculate the k-th 

elememt of the vector p(“) as 

p P=JzIlr(/I7c) I-- p P(W)G(OP P (0)) 

x (Y(“)(k) (o)exp(-0 y2 ci+/2)d W, (21) 

where defined are 

p A”) (w)= p P) (+m(w), (22) 

~(n),,,(,,=e~p{-,‘(m’n’r r’.‘(m)-(p,o(w)jl)iZ} 

I/m[. (23) 

G(x)= F (x)/x = fexp{- x2 (1- A)‘/2)d A, (24) 

and 

F (x) = exp(- x2 / 2)jiexp(u2 / 2)du (25) 

is called Dawson ‘s Integral [8]. Fig. I shows the graph of G(x). 

The (k,K) -th element of the matrix W(“) can also be 

calculated from (15) as 

Wk.(“) =Jzq/ln) 

XI-- [D,,In)(~)-02G(wp~(n)(w))~~(“)(w)~.(’)(w)] 

/,/~@“)(q (w)exp(-(3 “* o2 l2)d 0. (26) 

Thus p(“) and W(“) are obtained in (21) and (26), respectively, 

as integrals with respect to o for which numerical integration is 

usually required. Ihe vector p(“) and the matrix U(“) (see (I I)) 

complete the difference equations (4) and (5), further enabling the 

calculation of the MSE convergence. 

III. RESIDUAL MSE AJTER CONVERGENCE 

In this section, assuming the filter convergence, we will solve the 

residual MSE theoretically. If the filter converges as n-+ 00, then 

clearly rn(-) = p(-) =pL('D'(w)=O and pk(-)(o)=O. 

From (5) and (I I), an equation 

Wk’)R(“) + ,,+‘)Rk’) = a c Ta (27) 

results, where 

If we approximate R’-) - +-)IdI/v)I. I/pq 

=II-E(~)w~/~, and D~r;(~)(~)rcr.‘, then 
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Fig. I Graph of function G (x). 

W(%217rIbo /Jd”)+cr, 

x(Ra-~(-)/(~(~)+~~)Ra~/a,‘/Nj. (29) 

From (27) with (29) one obtains approximate theoretical 

expression for the residual MSE after convergence as follows. 

E(~)~(a,lZ)(x/Z)o.NJ~ 

x{,+(a,/2)(n/2)(o,Nlls.)rr(Rai)l(~,’N)l} 

z(a,/2)(a/2)a,Na,, (30) 

for a sufficiently small step size or for E(-)(( 0 y2. 

Theoretical value of the residual MSE often helps us 

determine the step size which meets the requirement for the 

estimation accuracy in the adaptive filter design. 

IV. APPROXIMATE DIFFERENCE EQUATIONS 

In this section, we try to integrate (21) and (26) in Section II 

analytically, through approximation, to obtain simpler 

expressions for p(“) and WC”). 
First, let us define 

Sat”) = Ra R(“) , (31) 

and assume Sa(“) / CT ,.2 (( / , Then, from (I 9) 

A(“) (0)-I E I- 0’ Sa(“) . (32) 

By approximation using (32) (21) becomes analytically 

integrable as follows. 

p$‘)~ 2/7r/ Jr;;J~M-‘(p<~% a,)c(op,~(")/c~,) 

x erp{-~2(El”1-(~,inil~,,~+~~),2}d,. (33) 

where 

ji.(“)ARa m(“)= paO(“),pJ) . . ..I pu,v-P] r. (34) 

Performing the integration of (33) using a formula 

results in 

pJ% (2 /Jr) sin-‘(/f~~~n~l,./~~), (36) 

and further differentiating (36) with respect to m, (‘) yields 

Wk& (2/7r)Rat,lo./ / & (“+.r(‘hJ.)l+ cJv2 .(37) 

(4) and (5) combined with (I I). (36) and (37) form 

approximate difference equations (AD.&) for calculating filter 

convergence with less computing time. Note that (36) and (37) 

are exactly the same formulae derived in [5]. 

V. EXPERIMENT 

In order to examine the accuracy of theoretically calculated 

convergence of adaptive filters using the proposed difference 

equations, we have done experiment with some examples, in 

which simulation results and theoertical ones are compared. Also 

compared are convergence curves calculated with the formulae 

in [5], or (ADEs) with (36) and (37). In the experiment the 

simulation result is an ensemble average over 1000 independent 

runs of the filter convergence. 

Three examples are carefully prepared. In these examples, 

input reference signal is AR1 modelled with regression 

coefficient 7j . 

Example #I N =4, c~a*=l, q=.S 

h=[.OS, .994, .Of, 41’ 

0 2- ” -. 01 (-2OdB), a L‘=2”’ 

+ E (-)z -38 dB (( CT y2 

Example #2 N=2, o.*=I, q=.8 

h = [ .995, -qr 

CJ ,‘=.0001 (-4OdB), a c =2-4 

+ E(=-‘)z -21 dB )) CT v2 

Example #3 N=8, ga2=I, q= O(W&Ginput) 

h=[.Of, .a?/, .os -.m, -.I, -.os -.02, -.Of]’ 

o,.‘=.OOf (-30dB), ac=2-* 

+ E (-k -30 dB z CJ ,a2 

Fig.2 shows the convergence curves for Example #I, where 

excellent agreement is observed between the simulation result 

and the ones theoretically calculated with the proposed 

difference equations and with the formulae in [5] (ADEs). 
Fig.3 illustrates the convergence for Example #2 in which the 

step size is chosen fairly large. While the convergence calculated 

with the ADEs exhibits poor accuracy, the proposed method 

gives a theoretical curve in good agreement with the empirical 

one. 

In Fig.4 the convergence curves are shown for Example #3. 

The proposed difference equations estimate the theoretical 

convcgence that well agrees with the simulation result. However, 

the convergence curve based on the ADEs slightly deviates from 

the above one. 
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In summary, we observe that the proposed set of difference 

equations has sufficient accuracy in calculating the filter 

convergence for a wide range of parameter values. However as 

was mentioned, the equations require numerical integration, and 

therefore a large amount of computation. 

VI. CONCLUSION 

In this paper, a new set of difference equations has been 

proposed for convergence analysis of adaptive filters using the 

Sing-Sing Algorithm with Gaussian input reference and additive 

Gaussian noise. The analysis is based on the assumption that the 

tap weights are jointly Gaussian distributed, and yields equations 

expressed as integrals involving probability generating 

functions. 

Theoretical formula for the residual MSE after convergence 

has been solved for use in the filter design, and simpler 

approximate difference equations have been further developed. 

Experimental results show that the theoretically calculated 

convergence with the proposed diffence equations exhibits better 

agreement with that of simulation than the approximate 

difference equations, and has sufficient accuracy for a wide 

range of parameter values of adaptive filters. 

Although the proposed difference equations are proven useful 

for practical design, further improvement may be required to 

reduce the computing time. 
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