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ABSTRACT 

In this paper, the fast implementation of cosine-modulated 
filter bank (CMFB) is revisited. A class of paraunitary 
CMFBs with arbitrary length is considered. By further 
reorganizing of the polyphase component matrix and using 
the linear-phase property of the prototype filter, we obtain a 
more efficient implementation structure for the CMFB, in 

which we use 2 x 2 lossless matrices instead of 2 x I 
ones. In the new implementation, the number of two- 
channel iossless lattices is reduced by a factor of two. 

1. INTRODUCTION 

Cosine-modulated filter banks (CMFB), which can be 
designed and implemented efftciently, have been 
investigated extensively in recent years [I]-[6]. While the 
design of CMFBs has been addressed by many researchers, 
we investigate the implementation of paraunitary CMFBs in 
this paper. Typically, the polyphase component matrix of a 
paraunitary CMFB can be expressed as the product of a 
polyphase part in terms of the polyphase components of the 
prototype filter and a modulation part, and the CMFB can 
be implemented through two-channel lossless lattices and 
fast discrete cosine/sine transform (DCT/DST) algorithms, 

see, for example, [I ,4]. M two-channel lattices are used for 
an /V-channel CMFB. Notice that only half the number of 
the lattices are required in the implementation of Malvar’s 
CMFB called extended lapped transform (ELT) [2]. The 
motivation of this paper is to generalize the above Malvar’s 
result to other paraunitary CMFBs. The arbitrary-length 
CMFB developed by Nguyen and Koilpillai in [3] is 
considered in this paper. 
This paper is organized as follows. In section 2, we first 

review the arbitrary-length CMFB briefly. Then we show 
that the four filters in each pair of power complementary 
polyphase components of the prototype filter and its related 
one due to the linear phase property of the prototype filter 

form a 2 x 2 paraunitary matrix. In section 3, a new 
expression of the polyphase component matrix of the 
CMFB is developed. Based on it, a more efficient 
implementation structure is obtained by using the 2x2 
lossless matrices instead of the 2 x I ones in the traditional 
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implementation. The implementation complexity of the 
CMFB is discussed in section 4. 
Nufufions: Bold letters indicate vectors and matrices. The 

fimctions [x1 and Lx] round the value of x to the nearest 

integers towards infinity and minus intinity respectively. 

C;’ and C; stand for the standard DCT matrices as 

defined in [8]. 0 stands for matrix whose entries are all 

zeros. I, and J, are the Nx N identity and reverse 

identity matrices, respectively. 

2. THE ARBITRARY-LENGTH CMFB 

2.1. A Review of The Arbitrary-Length CMFB 

Let h(n) denote a linear-phase low-pass prototype filter with 

length N = 2m, A4 + nr, ,where or+ and 111~ are integers, 

and O<m, 52 M-l, then the b/-channel arbitrary-length 

CMFB is defined as [3]: 

h, (n) = 2h(n) cos( n(k;o.5) (n-Lg)+(-l)’ a, (la) 

/,(n)=2h(n)co~(~(‘;~‘~)(n_~)-(-I)’a, (lb) 

where h, (n) and /; (n) are the impulse responses of the 

kth analysis and synthesis filters. The CMFB is exactly the 
one investigated in [I] with an arbitrary length of the 
prototype filter h(n). 

Suppose that the low-pass prototype filter is symmetry, then 

the synthesis filter fk(n) is the time-reversed and 

shifted version of the analysis filter I+(n). This relation 

means that the CMFB is pamunitary if and only if it has 

perfect reconstruction property [9]. Let G, (z) , k =O,l,..., 

USI, denote the type 1 polyphase component filters of 
H(z) [9]. Due to the symmetry property of the prototype 

filter, G, (z) satisfies the following conditions: 

Gk (z>= 
znu c;,,,, -,-k , k <nr, -I 

Znl,, -lc; krm, 
(2) 

Z,\l+nr,-I-k ) 

where Gk (z)=G, (z-l). It has been shown in [3] that the 



necessary and sufftcient conditions on the polyphase filters 

Gk (z) for perfect reconstruction are the following: 

(?k (z)(;, (z)+i? M+k (z)G,+, (I)=&, Osks M-l. (3) 

This means that appropriate pairs of the polyphase filters 
are power complementary. Depending on the lengths of the 

two filters Gk(z) and G,,,,+k(z) and the relationship 

between them, four classes of power complementary pairs 
can be distinguished in the general case for arbitrary length 
prototype filters. The conditions given by (3) can be 
satisfied by four different modes 131. In mode a and c, the 
two filters have the same length. If they are related by equ. 
(2), they are under mode c, otherwise mode a. In mode c, 
both the two filters must be some delays. ‘In mode b and d, 
G,(z) and GM+k (z) have different lengths. If they are 

related to themselves by equ. (2), they are under mode d, 
otherwise mode b. In mode d, one of the two filters must be 
a delay, and all coefficients of the other one must be zeros. 

2.2. Lattice Structure for a Power Complementary 

Pair and its Related One 

The power complementary filter pair G,(z) and GM+k(~) 

satisfying (3) can be completely factored as the following 
two-channel lossless lattice: 

where 

ck,, =cosQk.,, sk., =sinQ,.,, 1=0.1,2 ,... m , and m depends on 

the lengths of the two filters. For the case N=2mM, all the 

polyphase components G,,(z) have the same length, and 

there is no restriction on any angle parameter ok,, . For the 

general case when the prototype filter has arbitrary length, 
there are different constraints on the angles of the lossless 
lattices corresponding to the four modes (See [3] for details). 
For each power complementary filter pair we can find a 
related one from equ. (2). The four filters in the two pairs 
define a 2x2 system. We define the following three types 

of 2x2 systems in terms ofdifferent M, and k : 

i). m, SM. k<m, -I or m, > M .m,-M<k<M-I 

G(z) 

L”‘(z) ’ J2M - z-‘G*,+~(z) i 

GM+, -,-k(Z) 
CT,,,-l,-,(z) (54 

, m,<k<M-I 

Gk (Z) G,,+,-k (Z) 

Gtwhk (Z) -G,,+, (Z) 1 ’ 
(5c) 

LT) is for the polyphase filters under mode b and mode d. 

L(,2) and L(k3) are for the polyphase filters under mode a 

and mode c. It can be shown that these systems are 
paraunitary and can be expressed as the following 2x2 
lattices: 

q(z) = 

W 

L:~‘(~)=R,,-,~(z)R,,,-,A(z)-..R,,,A(z)R,., [ 1 ; & (6b) 

In mode c and mode d, the corresponding lattices are triviai 

[IO]. 
In practice, a two-channel lossless lattice can be 
implemented by using the two-multiplier structure for each 
section[2,9]. A 2x1 lossless lattice with m free angle 
parameters and others set to be zero or ~12 can be 

implemented by using 2m multipliers and 2(m-I) adders. 

For the corresponding 2x2 system, both the two numbers 

are 2m+l. For L’,” and Ly’ , there are m. free angle 

parameters, and hence 2m,+l multipliers and 2m,+l 

adders are required. For L(k3), there are m,+l free angle 

parameters, and hence 2m,,+3 multipliers and 2m,+3 

adders are required. 

3. FAST IMPLEMENTATION OF THE 

ARBITRARY-LENGTH CMFB 

In this section, we consider the implementation of the 
CMFB. Considering the relationship between the synthesis 
bank and the analysis bank, we only deal with the later. The 
polyphase component matrix of the analysis bank can be 
expressed as [3]: 

where 

CI 

[c], , =2c0s( 

~)PJz7 
[ 

Gk (Z) GM +m,-l-k(z) go(z)=dWGo(z) G,(z) . . . G,,,-,(z)) 
G,M+k(z) -Gz,u+m,-1-h) 

I 
(5b) 

g, (z)=diug(GM (z) G,w+, (z) . . Gzh,-, (z)) 

, k_<m,-M-I Based on (7) and the power complementary condition in 

(7) 



equ. (3) for perfect reconstruction, the filter bank can be 
implemented through a parallel bank of 2x1 lossless 
lattices cascaded by the modulation matrix. The number of 
the 2x1 lattices is equal to the number of subchannels M. 
The modulation part can be implemented by fast DCT 
algorithm. Such an implementation structure has been 
widclj used in the CMFBs with N-2mM [ 1,4]. The linear- 
phase property of the prototype filter is not exploited to 
reduce the complexity. 

Let m,+ M-I=21,-I, , where l,, and I, are integers, and 

1, ~(0,l) . For I, equal to zero, one of ml and M is odd, 

and the other even. For I, equal to one, both m, and M 

are odd or even. By using the properties of cosine function, 
the modulation matrix can be expressed as: 

~=J~MD~AA,-BA, u,+m,] (8) 

where D is an MxM diagonal matrix with the kth 

diagonal component [D]k,k =(-I)Lk’2J, and 

Case6: l,=l, l,<M ,and m, 20 

Case 7: I, =l, I, = M 

Case 8: 1, =I, I, > M 

Table 1 shows the numbers of the 2x2 lattices used in the 
implementation of C(z) for the eight different cases. Here 

we consider Case 1 as an example. In this case, the 
number of subchannels M must be odd , and I,, is equal to 

(M-1)/2 C(z) can be expressed as: 

0 0 0 &” 0 0 0 

0 0 Gb-, 0 q)+, 0 0 

G(z)= ; 6 8 8 x 
. . 0 

0 GM-I 

z-‘GM 0 0 0 0 0 -z-Q,,-, 
0 .-. 0 0 0 .* 
0 0 z-‘GM4,-, 0 -z-‘GA,+,,+, b 

0 
0 

(11) 

where G, stands for GGk(-z2). C(z) can be 

implemented in parallel through a set of 2x2 lossless 

systems: 

Substituting (8) into (7), we obtain the following expression 
of E(z): 

E(z)=DCC(z) (9) 
where 

C(z)=&%[(AA,-B/l&,(-z’)+z-‘(AA,+BA,)g,(-z’)] 

(10) 
Based on this expression, the analysis bank can be 
implemented more efficiently. The diagonal matrix D only 
changes the signs of the output subband signals. The matrix 

C is the type III DCT and type IV DCT for 1, to be zero 

and one respectively. It can be shown that the Mx M 
matrix C(z) can be implemented through a parallel bank 

of 2x2 lossless lattices, which are related to L$) defined 

in Section 2, and some delays. To see this clearly, eight 
cases can be distinguished as the following: 

Case I: I, =O, I0 <M , and m, = 0 

Case 2: I, =0, I,< M and m, $0 

Case 3: I, =0, I, = M 

Case 4: I, =O, I, > M 

Case 5: I, =I, 1,~ M , and m, = 0 

= A(z)Ly (-22) 
where O&5( M-3)/2, and a delay system 2&G,” (-z’ ) 

4. IMPLEMENTATION COMPLEXITY 

In the previous section, we have shown that the CMFB can 
be implemented through a parallel bank of 2x2 lossless 
lattices and some delays followed by the standard DCT. For 
the DCTs, fast algorithms are available [7,8]. All the lattices 

are related to L(') L , I = 1,2,3, without additional multipliers 

and adders required for the implementation. From Table I, 
it is obvious that the total number is less than or equal to 
u/2 for each case. The implementation cost of the CMFB is 
that of about w2 2x2 lattices plus one hi-point DC? 
matrix working at M-fold decimated rate. 
In the traditional implementation structure of an M-channel 
CMFB, the number of the 2 x I lattices is M. Ignoring the 
trivial lattices, which are under mode c and mode d, the 
number is exactly twice as that in the new implementation 
structure. Since only one additional multiplier and three 
additional adders are required to implement the 

corresponding 2x2 lattice of a 2x 1 one, the complexity 
of implementing a set of 2 x 2 lattices is lower than that of 
doubled 2 x I ones. When the section numbers are large, 

the complexities of the two type lattices are approached, 
and hence the cost can be saved nearly one half to 
implement a set of 2x 2 lattices instead of doubled 2x I 
lattices. 



As an example, we consider Case 5 with M = 2” to see the 
efficiency of the new implementation structure. In this 

case,m, is equal to zero. M/2 lattices L:‘(z) and type 

IV DCT are used. By using the fast algorithm presented in 

[8], ( M/2)log2 M+M multiplications and (3M/2)log2 M 

additions are required to compute the M-point DCT-IV. The 

total cost of implementing the CMFB is M(2m,, +3 + 

log, M)l2 multiplications and M(2m,, +I+ 31og, M)/2 

additions per M input samples. It is the same cost required 
by Malvar’s ELT with the same length [2]. In the traditional 

implementation, M(4q +2+Iog2 M)/2 multiplications and 

M(4q, + 3log, M)/2 additions are required for M input 

samples [ 1,9]. In Fig. I, we plot the average numbers of the 
multiplications and additions per input sample (MPIS and 

APLS) vers m, with M = 16. It can be seen that by using 

[6] H. Xu, W. S. Lu, A. Antoniou, “Efficient iterative 
design method for cosine-modulated QMF banks,” IEEE 
Trans. SP, Vol. 44, No. 7, pp.1657-1667, June 1996. 
[7] Z. D. Wang, “Fast Algorithms for the discrete W 
transform and for the discrete Fourier transform,” IEEE 
Trans. ASSP, ~01.32, pp.803-8 17, Aug. 1984. 
[8] Z. D. Wang, “On computing the discrete Fourier and 
cosine transforms,” IEEE Trans. ASSP, ~01.33, pp. l34l- 
1344, Oct. 1985. 
[9] P. P. Vaidyanathn, MuIrirate Systems and Filter Bunks, 
Englewood Cliffs, NJ: Prentice Hall, 1993. 

[IO] X.-Q Gao, Z.-Y. He and X.-G. Xia, “Efficient 
implementation of arbitrary-length cosine-modulated filter 
banks,” Submitted to IEEE Trans. SP, 1997. 

Table 1. The numbers of lattices in the new 

the new implementation structure, the save of operations 

becomes more significant as m. increases. 

5. CONCLUSlON 

A more efficient implementation structure for a class of 
paraunitary CMFBs with arbitrary length has been 
developed in this paper. The linear phase property of the 
prototype filter is exploited to reduce the implementation 
cost. The new implementation structure uses 2x2 lossless 
matrices instead of 2x1 ones with the total number of 
matrices reduced by half. The implementation costs are 
significantly saved, especially for the CMFB with large 
ratio of the length to the number of channels. We have also 
extended this result to a class of arbitrary-length linear- 
phase CMFBs in [ 101. 
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Fig. I. Computational complexity in case 5 with M== 16: (a). 
the number of multiplications per input sample; (b). the 

number of additions per input sample. Here + and x 
represent the complexities of the traditional and the new 
implementation structures respectively. 


