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ABSTRACT 

In existing speech coding systems, all quantizer codebooks 
are designed to suit the statistical and perceptual charac- 
teristics of speech signals of a population of speakers. How- 
ever, an individual’s speech signal does not exhibit, even 
over a long time, the entire range of characteristics of the 
population. With the advent of the personal communica- 
tion systems, personal information might become available 
and be used to improve the rate-distortion performance of 
speech coders. In this paper we assess the potential gain of 
personal speech coding by designing codebooks for individ- 
ual speakers. Spectral quantization, excitation and pitch 
lag codebooks of existing CELP coders are redesigned. The 
gains appear to be modest, suggesting that we need to use a 
different coding framework, which can model personal char- 
acteristics explicitly. Amongst the components, the spectral 
quantiser seems to be most amenable to personalisation. 

1. INTRODUCTION 

Explosive growth in applications of digital wireless commu- 
nications has provided a great impetus to research on low 
bit-rate speech coding. Although many advances have been 
made in speech coding technology, a significant leap in rate- 
distortion performance is still needed. In existing speech 
coding systems, all quantiser codebooks are designed to suit 
the statistical and perceptual characteristics of speech sig- 
nals of a population of speakers. However, an individual’s 
speech signal does not exhibit, even over a long time, the 
entire range of characteristics of the population. As the 
wireless communications network evolve into what we call 
the personal communications system (PCS), personal infor- 
mation might become available through the network or from 
a smartcard or a database. One way to improve the rate- 
distortion performance of a speech coder is to design the 
coder based on personal speech data. Therefore, an indi- 
vidual’s speech could be encoded and decoded using his/her 
own codebooks. We call such a paradigm personal speech 
coding (PSC). 

In the most general sense, a personal speech coder is 
a coder whose structure and codebook contents are com- 
pletely tailored, by off-line design and/or online adaptation, 
to an individual’s speech. As a first step, our work in this 
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paper is limited to accessing the extent of rate-distortion 
efficiency enhancement that can be garnered from tailor- 
ing the contents of codebooks to individual speakers. The 
tailoring is done via off-line codebook design, and existing 
coding structures are used. In the rest of this paper, we first 
describe our experiment platform and speech database, and 
then we report our assessment of the personal gains of three 
coder components. 

2. PERSONALIZING LPAS CODERS 

Linear prediction based analysis-by-synthesis (LPAS) cod- 
ing is perhaps the most popular speech coding technique. In 
an LPAS coder, the characteristics of the speech signal are 
represented by three components: LP parameters, excita- 
tion signal, and pitch lag. We have performed experiments 
to assess the amount of personal coding gain, separately for 
each of the three components in an LPAS coding frame- 
work. Personal gain is expressed in terms of the amount 
of reduction in bit rate obtained by using personal code- 
books instead of generic codebooks, while maintaining the 
coding quality furnished by the generic codebooks. Coding 
quality is assessed based on objective measures as well as 
informal subjective listening. The objective measures are 
average segmental signal-to-noise ratio (SegSNR, or sim- 
ply SNR), average spectral distortion (SD), and average 
synthesized-speech spectral distortion (SSD). SD is widely 
used to measure the performance of LP parameter quantiz- 
ers. SSD measures the net effect on the spectral envelope of 
reconstructed speech due to all speech coder components. 

We set up a speech database consisting of datasets for 
individual speakers as well as for the general population. 
Personal speech datasets were constructed using speech 
recorded on commercial audio-book cassette tapes. Four 
speakers, two male and two female, were used. The speak- 
ers are given labels M-l, M-2, F-l, and F-2, where M stands 
for male and F for female. Each training set consists of 
about 55 minutes personal speech data, and each test set 
about 15 minutes or so. Another 8 speakers were chosen, 
each contributing about I-minute of speech, to form our 
generic training set. There is no need for a generic test set 
in our PSC experiments. All speech material were sampled 
at 8 kHs, and low-pass filtered according to G.712 specifi- 
cation. We have also used the TIMIT database to represent 
a larger general population, but the recording condition is 
apparently different from the above g-speaker generic set. 
For this reason, we do not assess personal gains using our 



TIMIT-based results. 

3. SPECTRAL QUANTIZATION 

3.1. LP Parameter Quantization 

For LP analysis, input speech is first highpass filtered and 
then processed using the lattice-LP analysis module of the 
GSM half-rate (VSELP) coder [2]. The module produces 
10 reflection coefficients every 20 ms, using a rectangular 
window of 21.25 ms for analysis. The reflection coefficients 
are converted to direct-form filter coefficients, and thence 
to LSF (Line Spectrum Frequency) parameters. The LSFs 
are quantized and converted back to direct-form coefficients 
for use in speech synthesis. Two different “platforms” were 
used to synthesize speech for subjective evaluation. In the 
“LP-synthesis” platform, an all-pole synthesis filter using 
the quantized filter coefficients is excited by the original 
unquantized LP residual signal. Any audible distortion in 
the synthesized speech is due solely to spectral quantization. 
We also used the half-rate GSM VSELP coder as a synthesis 
platform. In this case, distortion in the synthesized speech 
is due to the combined effect of all coder components. 

Table 1. SD performance results for LP quantiza- 
tion of personal test sets using personal codebooks 

that can not be equally divided are allocated to the last two 
subvectors, first bit to the middle subvector, and the second 
to the last subvector. 

Table 2. SD performance results for LP quantiza- 
tion of personal test sets using generic codebooks 

) 24 1.204 3.27 0.01 

1 27 1.055 2.72 0 I M-2 I 26 25 1.109 1.181 3.13 4.46 0.01 0 

] 24 1.274 6.06 0.02 

1 27 0.966 0.91 0.01 
26 1.017 1.08 0.01 

F-l 25 1.082 1.86 0.01 
24 1.185 3.05 0.02 

27 1.035 0.90 0 
26 1.088 1.14 0 

F-2 25 1.168 2.34 0.01 
24 1.258 3.51 0.01 

Test 1 Bits Avg. SD Outliers Outliers 
Data Used (;iB) 

1 27 0.897 
2-4dB (%) > 4dB (%) 

0.65 0.01 
26 0.944 0.80 0.01 

M-l 25 1.010 1.51 0.01 
1 24 1.095 2.03 0.01 

) 27 0.922 1.00 0 
26 0.968 1.13 0 

M-2 25 1.034 1.95 0 
24 1.118 2.75 0.01 

27 0.872 0.48 0.01 
26 0.918 0.62 0.01 

F-l 25 0.975 1.02 0.01 
24 1.066 1.62 0.01 

27 0.903 0.42 0.01 
26 0.950 0.57 0.01 

F-2 25 1.025 1.16 0.01 
24 1.098 1.76 0.00 

After considering the trade-offs between performance and 
complexity, we elected to use three-split vector quantization 
(3-SVQ) to encode the LSF parameters. The SVQ groups 
the 10 LSFs in ascending order into subvectors of dimen- 
sions 3, 3, and 4. Separate SVQ codebooks were designed 
for the general population and for the individual speakers 
using the generalized Lloyd algorithm (GLA). The weighted 
Euclidean distance measure of Paliwal and Atal [l] is used. 
Their criterion for “transparent” quantization is also used: 
average SD of about 1 dB, less than 2% of 2-4 dB SD out- 
hers, and no outlier having SD greater than 4 dB. Through 
experiment, we found that the following scheme for bit al- 
location is best in terms of SD performance. If the total 
number of bits of an SVQ is a multiple of three, then equal 
number of bits are assigned to the subvectors. Extra bits 

Tables 1 shows the quantization results obtained by ap- 
plying the personal codebooks to their corresponding test 
sets. The SD performance versus bit rate is different across 
all the speakers. “Transparency” is attained at 25 bits for 
the two male speakers, and 24 bits for the two female speak- 
ers. 

The above results are based on experiments wherein the 
training set and test set are both derived from the same 
source, e.g., codebooks trained on M-l and applied to M-l. 
To estimate personal gains, we applied the generic code- 
books to quantize the four personal test sets. The results 
are shown in Table 2. Clearly, SD performance is degraded 
in comparison with that shown in Table 1, which are based 
on applying the personal codebooks to quantize the per- 
sonal test sets. Comparing the two tables, we see that 
for M-l with generic codebooks, one or two more bits are 
needed in order to maintain nearly the same level of SD 
performance as using personal codebooks; thus, the per- 
sonal gain is 1-2 bits for M-l. For all the other speakers, 
the gain is 2 bits. Based on Paliwal and Atal’s criterion, 
“transparency” occurs at 26 bits for M-l and F-l, 27 bits 
for F-2, and at more than 27 bits for M-2. 

To get a sense of the degree of personal “tuning” of the 
codebooks, we “cross” the 25-bit personal SVQ codebooks 
with all the test sets to obtain the matrix of average SD 
results shown in Table 3. Every diagonal entry in Table 3 
is the smallest amongst its corresponding row and column 
entries. Hence, the personal codebooks of each individual 
speaker are best matched to that speaker. Moreover, the 
codebooks of a different speaker but from the same gender 
produce a better match than across the gender. 



Table 3. Average SD results for LP quantization by 
crossing 25-bit codebooks with all test sets (dB) 

Test Set 
M-l M-2 F-l F-2 

1.010 1.126 1.269 1.248 

1.098 1.034 1.293 1.262 

1.341 1.428 0.975 1.215 

1.290 1.315 1.163 1.025 

1.114 1.181 1.082 1.168 

1.264 1.241 1.334 1.359 

3.2. Listening Tests 

To verify the objective gains, we carried out informal listen- 
ing tests. Four sentences were selected for each speaker. For 
each sentence, we determined the bit rate at which “trans- 
parent” quantization occurs. “Transparent” quantization 
means that speech reconstructed using quantized LP pa- 
rameters is indistinguishable from the original speech in lis- 
tening. The largest bit rate used is 30 bits. To calculate 
an average bit rate at which “transparent” quantization oc- 
curs for each speaker, the highest and lowest rates out of 
the four rates for the four sentences are discarded and an 
average of the remaining two rates are taken. Based on this 
procedure, the number of bits required for “transparent” 
quantization using generic codebooks is 24, 25, 26.5, and 
29.5 for M-l, M-2, F-l, and F-2, respectively. With per- 
sonal codebooks, the numbers are 18.5, 20, 22.5 and 27 for 
the same order of speakers. The bit rate difference between 
the two cases for each speaker is regarded as the subjective 
personal gain: 5.5, 5, 4, and 2.5 bits for the four speakers. 
We note that the subjective personal gain for each speaker 
differs substantially from the objective personal gain. The 
objective results could be somewhat more reliable because 
the objective tests are based on much larger sample sizes. 

3.3. LP Quantization on VSELP Platform 

Besides the LP synthesis platform, we also assessed the 
subjective personal gain using the VSELP platform. We 
replaced VSELP’s 28-bit FLAT quantizer with our 3-SVQ. 
First, we estimated the bit rate at which the generic SVQ 
is comparable to the 28-bit FLAT quantizer. Then, we did 
the same thing for the personal SVQs. By “comparable,” 
we mean that the quality of reconstructed speech in the two 
cases is hardly distinguishable. The same set of four test 
sentences for each speaker and the same test scoring method 
is used, as in the subjective test using the LP synthesis plat- 
form. Our results show that the SVQ performs better than 
the FLAT quantizer. The improvement can be regarded as 
a “structural” gain, which is needed later on to calculate 
the personal gain. We found the “structural” gain to be 
consistent across the subjective listening results. First, the 
average gain for each speaker relative to the FLAT quan- 
tizer is determined. Then, we subtract off the structural 
gain for each speaker to arrive at the subjective personal 
gain over the VSELP platform: 3.5 bits for M-l, 3 bits for 
M-2, and 5.5 bits for F-l and F-2. 

4. EXCITATION CODEBOOK TRAINING 

We used the FS1016 CELP coder to experiment with exci- 
tation codebook training. FS1016 has only one excitation 
codebook, containing 512 of 60-dimensional vectors [3]. The 
original code vectors were derived from a random number 
sequence. When we replaced the original excitation code- 
book with our own stochastic codebook populated from a 
Gaussian random sequence, we improved the reconstructed 
speech quality somewhat. The improved codebook served 
as the initial codebook for subsequent codebook training. 

The basic excitation codebook training procedure follows 
the GLA framework: optimizing the encoder for a given 
decoder leads to partitioning or clustering of the training 
data, and optimizing the decoder for a given encoder leads 
to computing a centroid for each partition region. How- 
ever, the excitation codebook is located inside the LPAS 
loop. The training is performed to minimize the average of 
the perceptually-weighted squared error (WMSE) of the re- 
constructed speech. Thus, training is based on speech data, 
not LP residual data. The resultant training procedure is 
“closed-loop.” In this closed-loop procedure, the distortion 
measure contains weights that vary with the data, and the 
centroid computation is highly intensive [4, 51. Though the 
speech data is fixed during training, clustering is actually 
performed on target data vectors. The target data vectors 
are derived from the speech data but they are also a func- 
tion of the current excitation codebook. Consequently, the 
training set effectively varies from iteration to iteration in 
the closed-loop optimization. As a result, convergence is 
not guaranteed, even to a local optimum. In practice, how- 
ever, the average WMSE does show large decrease in the 
first few iterations, as shown next by our results. and the 
training process can be stopped thereafter. 

Figure 1. WMSE results for g-bit excitation code- 
book training 

During excitation codebook training, all other FSl016 
codebooks are fixed except for the excitation gain, which we 
kept unquantized. With a subframe size of 7.5 ms in CELP, 
we chose to train over 8 minutes of speech so that the ratio 
of the size of the training set to the codebook size is 125. 
Similar to the LP quantization experiments, we designed 
a generic excitation codebook as well as four personal ex- 
citation codebooks. Distortion performance measurements 
obtained from the training process are plotted in Figs. 1-2. 
Training is terminated after ten iterations. For all personal 
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Figure 2. SNR results for O-bit excitation codebook 
training 

codebooks, the average WMSE decreases monotonically in 
the first eight iterations. The drop in WMSE is nearly 30% 
for M-l, and about 25% for the other speakers. For generic 
codebook, the drop in WMSE is not as much as in the 
personal cases. The average segmental SNR increases al- 
most monotonically in all cases, providing an improvement 
of 0.3-0.7 dB. 

Our listening tests showed that there is improvement in 
perceptual speech quality by using trained excitation code- 
books, generic and personal, in comparison with using the 
stochastic codebook. However, the improvement is differ- 
ent across speakers. To estimate the personal gain in ex- 
citation training, we fixed the generic codebook at 9 bits, 
and reduced the number of bits for the personal codebook. 
Through listening, we determined at which point the re- 
constructed speech quality using the personal codebook is 
comparable to that using the generic codebook. The sav- 
ings in bits due to using the personal codebook is a measure 
of the personal coding gain from excitation training. Per- 
sonal codebooks of 6, 7, and 8 bits were designed. The final 
codebook for each case is selected according to the mini- 
mum WMSE criterion. The same sets of test sentences and 
the same scoring method as before were used to conduct 
the test. Listening tests showed a personal gain of 0.5, 1.5, 
2 and 0 bit for M-l, M-2, F-l and F-2, respectively. 

5. PITCH LAG QUANTIZATION 

In LPAS coding, the closed-loop pitch predictor serves 
to exploit long-term prediction gain rather than faithfully 
track the actual pitch periodicity of the speech signal. In 
VSELP, the allowable pitch lag range is from 21 to 142 sam- 
ples, corresponding to a frequency range of 56 to 381 Hz, 
or almost three octaves. A typical speaker would produce 
about one octave of pitch range. To personalize the pitch 
quantizer, we set the pitch search range to a subrange of 
the original generic range. For example, by observing the 
histogram of pitch lag values used by VSELP in encoding 
personal speech, we found that the most heavily used por- 
tion of the pitch range for M-l is 70-150 Hz, corresponding 
to lags between 53-110 samples. Then, only pitch values 
in this range are allowed in the encoding of M-l’s speech, 
i.e., VSELP is allowed to search only in the pitch lag range 
of 53-110, rather than the full range. Thus, we could gain 

one bit by personalizing the pitch lag quantizer for M-l. 
Unfortunately, we found that the speech quality degrades 
drastically for most speakers. Hence, the pitch predictor 
provides long-term prediction gain that is critical to the 
operation of the coder. Another experiment we did that 
affirmed this role of the long-term predictor was to allow 
only male pitch range for female voice and vice versa. The 
gender identity was preserved in either case though quality 
was degraded. 

6. CONCLUSION 

We have reported on the experiments we have performed to 
evaluate the potential gain of personal speech coding. The 
results we have collected so far point to a modest rather 
than a drastic amount of personal coding gain. However, 
this tentative conclusion is arrived at without using any new 
coding structure or design algorithm, and for a very limited 
rate-distortion regime. 

Our results thus far seem to suggest that we need to use a 
different coding framework, one that models personal char- 
acteristics explicitly. We give a very simple example to 
illustrate this point. If we were to design a PCM speech 
coder based on the statistics of the waveform amplitudes, 
we would probably arrived at coders of similar performance 
whether the design is based on statistics from a popula- 
tion or a person. Personal characteristic features might be 
salient at a higher level (e.g. prosodic) than that captured 
by the LPAS coders. Features extracted in “lower dimen- 
sions” may not be able to discriminate higher-level events. 
The fact that in our experiments we could substitute per- 
sonal codebooks and pitch ranges from different speakers 
and still maintain much of the audible personal character- 
istics suggests that there is a great deal of redundancy in 
the LPAS coding platforms we have used, and not much 
personal characters were captured in the codebooks. 
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