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ABSTRACT 

We describe a new noniterative algorithm that generates the 
unique area function determined by the vocal tract length, 
the lip radius, and the spectral pair consisting of poles of the 
transfer function and zeros of the input impedance function. 
Our analysis is restricted to the class of piecewise-constant 
area functions defined on an even number of equal length 
intervals. The resulting algorithm involves fewer floating 
point operations per evaluation than the analogous method 
of Paige and Zue [4]. A method which uses a corpus of X-ray 
data is discussed for setting the higher order unobservable 
pole/zero frequencies. 

1. INTRODUCTION 

The general inverse speech problem is to determine the vocal 
tract shape from the speech signal. Considering only vowels, 
we let the area function .4(x) represent vocal tract shape. 
The first three formants {fi, fz, fs} are taken as the avail- 
able acoustic information. The mapping from formants to 
areas is nonunique, so we consider the problem of generat- 
ing area functions having a prescribed set of formants. We 
present a new algorithm for accomplishing this task in the 
significant special case of piecewise-constant area functions. 

We model speech production by Webster’s horn equation 

PI 

$A(+$+) + k2A(z)n(z) = 0, 0 < z < L (1) 

where k = 2Af /c (f being frequency and c the sound speed). 
The acoustic velocity w(z) = n’(z) (prime ’ denotes d/dz) 

and pressure p(z) = -J--i;ockR(z) where p is the ambient 
mass density. Let {fi} and {g;} be the spectra of eigen- 
frequencies of (1) corresponding to the respective boundary 
conditions 

n’(O) = 0 and 

{ 

o(L) = 0 * {fi} 

W(L) = 0 * {g,} 

(2) 

The {fi} are poles of the transfer function (formants), {g,} 
are zeroes of the input impedance function (see [j]), and the 
pair {f,, 9;) are termed the bi-spectrum. Important to the 
inverse problem are the facts that zeroes are unobservable 
in the speech signal and that only the first three or four 
formants are predicted by (1). 

Borg [l] proved that { fi, g,} uniquely determines A(z), up 
to a scale factor, for sufficiently regular coefficient functions. 
We have shown that an analogous result is true for piecewise 
constant (i.e. discontinuous) area functions, namely 

A(z) = 2 A,W (z - (n - l)A), (3) 
n=l 

where A = L/N is the width of each interval and W(X) 
is a window function which is unity when 0 5 E < A, but 
otherwise vanishes. We refer to A’ = (Al, AZ,. . . , AN) as the 
area vector, and only consider even N = 2M. In this case 
only M of the poles may be freely assigned and only M - 1 
of the zeros. This is a total of N - 1 parameters, the same 
as the number of free parameters in the scaled area vector. 

It becomes convenient to define the area ratios vector 

r’= 
( 
Al AN-I 

- Al’“‘?AN > (4) 

and the normalized truncated bispectrum vector 

Iii= (fi,92,fZ?...,gM,fiM)/f^ (5) 

where f 5 c/4L. Note that both 
ponents. We refer to h’ simply as 
label its elements 

Rand h have N - 1 com- 
the bispectrum vector and 

hzm = fmlf 
‘I m= l,...,M . 

hzm--l = smlf^ 

So hl = 0, i = (hz,. . . , hnr), and since poles and zeros are 
interlaced 

0 < hz < ... < h.v < N. (6) 

The vector i is a function via (l)-(3) of r’ alone. We for- 
mulate our results in terms of this function which we denote 
as the forward map and write as h’ = 3t (F). A fairly explicit 
description of 31 is given in Theorem 1. Symmetries in the 
bispectrum are then described in Theorem 2. An important 
theorem then follows concerning the uniqueness of %!. Af- 
ter this we, give an explicit computation of the inverse map 

r’ = ‘H-‘(h) in Theorem 4. Theorems 3 and 4 are the main 
results of this paper. 

There is insufficient space available here to prove the the- 
orems. however, the authors will supply them upon request. 



Briefly, Theorem 1 is obtained by solving (1) for piecewise 
constant A(z), as seen in (3), and requiring that bound- 
ary conditions (2) are satisfied. It is necessary to use the 
facts that both the acoustic pressure p(z)and volume ve- 
locity A(z)v(z) are continuous functions of position. The 
first step of Theorem 2 relies on a technical construction in 
Sturm-Liouville theory known as the Priifer substitution 
(See [9] chapter 10, sections 5-8), and the last two steps 
are obtained by analyzing the characteristic polynomials of 
Theorem 1. Theorems 3 and 4 are obtained by separately 
inverting and analyzing each step in the forward map (The- 
orem 1). Two matrices seen here are proven to be invertible 
by showing that they can be reduced to Vandermonde ma- 
trices. 

Evaluating the inverse map is only part of a solution to 
the inverse vowel problem, since we iu-_e only given a few for- 
mants and not the complete vector h. Even if we _know L 

and a, before inverting we must fill in the remaining h values 
in such a way that the resulting area vector is anatomically 
meaningful. To this end, we explore in Section 3 a possi- 
ble method of imposing static geometrical constraints into 
our model, thereby enabling us to set the higher order un- 
observable components of the bispectrum. Some discussion 
of setting the lower order unobservable zeroes, along with L 

and a is also seen in Section 3. 

Then erg = UN,+,, a~ = 0~ = uy, and for 1 5 m < IM 

[::I=[: x:::r:1 
The set of roots has a structure which we will need to 

know when we construct a complete vector i given only the 
first few formants. 

Theorem 2 The bi-speclrum {fl,g,} corresponding to a 

piecewise-constant tube of length L, having N = 2M sec- 

tions, has the following properties: 

1. The values-are real, they are-interlaced, g1 = 0 and 
g,u+l = Nf, independent of A, i.e. 

0 < fl < 92 < fi < . . . < g,u < fM < Nf^. 

2. {fi,. . . , fM} determine {f,} by 

l fM+i = -f,u+l--l + 2Nf, 1 5 i < M 

l f, = f,-,v + 2Nf, i > N 
2. EVALUATING ?i AND ?l-’ 

The solution to (l)-(3) takes the form of a pair of char- 

acteristic polynomials, for each of which the zero-set is an 
eigenfrequency spectrum. Let F(f) be the characteristic 
polynomial for poles and G(f) the characteristic polynomial 
for zeroes. Following a few definitions we present in Theo- 
rem 1 the formulae for evaluating F(f) and G(f) for given f, 

A’ and L. Then Theorem 2 describes the relevant structure 
of the set of roots of F(f) and G(f). 

Definition 1 For n = 1, . . . , N - 1, let rn = An/An+l, 

pn = (1 + rn)/2, qn = (1 - rn)/2, fin = (1 + r;‘)/2, and 
cjn = (1 - rR1)/2. 

Theorem 1 For a tube of length L and area vector A’ having 
N = 2M sections, the characteristic polynomials are given 
in terms of the angle 0 = nf/(zMf) as 

3. {gz, . . . ,g~} determine {g,} by 

l g.w+l+, = -g,u+l-, + 2Nf^, 1 5 i < M 

l 9, = gi-N + 2Nf, i > N. 

Thus the M lowest order poles and M - 1 lowest order zeroes 

(excluding gl) determine the entire bi-spectrum. 

So the forward problem is reduced to locating the first M 

positive roots of F(f) and the first A4 - 1 positive roots of 
G(f), which is done numerically in practice. The functional 
dependence of the forward map upon r’ is apparent from 
Theorem 1, since the values A, enter only through p,, and 
q,, , which depend only on rn. The fact that F(f) and G(f) 
present themselves naturally as functions of f/f explains 
why we normalize in the definition (5) of z. Theorem 2 shows 
that the full bispectrum contains no more information ab_out 
r’than does the normalized truncated bispectrum vector h = 

31(F). 

M 

F(f) = c a, cos(mc9) 

m=O 

and 
Theorem 3, The map ?I! is one-to-one. That is, if i can be 

obtained as h = A!(F), then r’ is unique. G(f) = y 5 Pm sin(m0). 
rn=l 

We now evaluate the inverse map for the class of piecewise- 
constant area functions by reversing the forward mapping 
algorithm of Theorem 1. 

The coeficients {a,} and {p,} are functions of r’ only. 

They are obtained in the following manner: 

Let tin z (u;,... ,uE) be a real-valued n-dimensional 

row vector generated recursively by d’ = (1) and, for 

n = l,...,N- 1, Theorem 4 Co_nsider a tube of length L composed of Ly = 

2M sections. If h = ‘h!(rJ then r’ can be recovered from h in 

the following five steps: 
p1 

= pn (UY, . . . , CI;: 0) + qn (0, u;, . . . ? u;) . (7) 



1. For all m = 1,. . . , M, define the angles 

2. Construct the invertible matrices 

1 COS(~l) ... cos((M- l)&) 

1 482) “. cos((M- l)O,) 

c= . . 

[:I ’ ! . . 

1 COS(@M) . . . cos((M - 1)8,,4) 

s= 

sin(62) ... sin((M - l)&) 
sin(&) . . . sin((M - ii’ : l)q&) 

. . 

sin(9w) . . sin((M I- l)q5~) 

along with the vectors 

r sin(Mh) 
and s’= 

3. Solve Ca = -c’and Sp = :Z for 
d = (a0, . . ,0.&f-1)+ and a = (PI,. . . ,Plu-l)+. 

4. Generate ON = (ur, . . . , us) from d and p via 

N 
u1 = 1. N uM+l = ff0, 

and for 1 < m < M 

[ :;::y =q: -11 [ ,:I . 
5. Generate r’ from dN by doing the following backward 

recursion: for n = N - 1, N - 2,. . . , 1 

(a) rn = (2~;” - ~4:::) / (uytl + uzz:), 

(b) calculate fin and & via Definitions 1, 

(c) generate fin = (~7, . . , u:) via 

Note: While the vectors G,p, and each l?’ calculated here 

may differ from their counterparts in Theorem I by a scale 

factor, the final result r’ is identical to the original. 

The algorithm of Theorem 4 should be compared with 
that of Paige and Zue [4] who considered the identical in- 
verse speech problem. They adapted a method originally 
developed to analyze transmission lines to the problem of 
recovering the area vector from the bispectrum. Their algo- 
rithm is similar to ours in that it is noniterative and produces 
unique area vectors (up to scaling) from the tube length 
and the initial segments of pole/zero frequencies. However, 

ours is more efficient. The fractional increase in floating 
point operations of their algorithm as compared to ours is 
approximately 6/N. This estimate is based on the use of 
Gaussian elimination to solve the M and M - 1 dimensional 
sets of linear equations making up the first step in both algo- 
rithms. Faster matrix inversion routines will further increase 
this value. This cost difference occurs because their method 
requires doing two synthetic monomial divisions prior to es- 
timating each component of the area vector. 

3. STATIC CONSTRAINTS 

To reconstruct an A’ which gives rise to formants { fl: f2, fa} 
do the following: 

1. L and {fl,f2,fs} + hzm = fm/p, m = l,2,3, 

2. choose hs, h5, hT, hs, hg, . . . , h.y consistent with (S), 

3. compute r’= B-‘(g) via Theorem 4, 

4. Rand a + A’ via A,v = xa2 and A,-,-1 = rn-lAn. 

Step 2) must be carried out in such a way that the resulting 
area vector is anatomically meaningful. Similarly a and L 

need to be chosen sensibly. Choosing these quantities will 
involve satisfying a combination of static and dynamic con- 
tinuity constraints, a full investigation of which is beyond 
the scope of this paper. However, we consider below the use 
of static constraints to set the higher unknown components 
of the bispectrum. 

In the manner of [8], X-ray measurements are used to 
incorporate anatomical constraints. Let {x1, . . . , x”} rep 
resent a corpus of area function measurements, and let h; be 
the bispectrum vector corresponding to A;. We distill from 
this corpus the average bispectrum vector (~2,. . . , PN) E 

J-l c,“=, - h’. Eigenvalue perturbation studies [3,6] suggest 

that the higher order components of h’ are of diminishing 
importance in distinguishing area functions, and might just 
as well be set to suitable nominal values. The idea dis- 
cussed below is to always set unknown bispectrum compo- 
nents (hs,. . . ,hiv) to (I&, . . . ,PN). 

Yehia provided us with the area functions measurements 
used in [S]. All major vowel sounds are represented in 
this data base. We calculated (~2,. . . , FN) specific to this 
data and then replaced the upper components of each zJ by 
(PS,... ,pN). The result of making these replacements are 
seen in Figure 1. Here N = 20 and cubic splines are used to 
produce smooth functions. The fine lines are the originals 
and the thick lines are the modified area functions. Clearly, 
using an X-ray corpus to set the upper components of i in 
this manner is a sensible technique. We feel that setting the 
lower unknown components (hs, h5, h7), along with L and a, 
must be accomplished using dynamic continuity constraints. 
This is the subject of current research. 
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Figure 1. Replacing (he,. . . , hN) with (ps,. . . ,c(N). 

4. SUMMARY 

For a piecewise constant area function, represented by A’, 
we have proven rigorously that the pole and zero spectra are 
completely determined by certain ini_tial finite segments, and 
we have shown how to reconstruct A, up to a scaling factor, 
given those initial segments and the tube length L. Except 
for the scaling factor, A’ is in fact unique. The algorithm 
for performing this unique reconstruction (Theorem 4) is 
new and is the main interest of this paper. It is seen to be 
more efficient than a previously developed algorithm [4] for 
solving the same problem. 

We also considered the problem of incorpor$ing anatomi- 
cal constraints into the process of recovering A from formant 
information. We concluded that, given the tube length L, it 
is feasible to use a corpus of X-ray measurements to set the 
higher unknown components of the bispectrum vector. 
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