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Abstract 

This paper describes an attempt to incorporate the 
tinctions of the auditory nerve system into the feature 
extractor of speech recognition. The tinctions include 
four types of well-known responses to sound stimuli: 
local peaks of spectrum in steady sound. ascending FM 
sound, descending FM sound, and sharply rising and 
falling sound. Each function is realized in the form of a 
three-level derivative operator and is applied to a time- 
spectrum (TS) pattern X(t,f) of the output of BPF with 
26-channels. The resultant acoustic cue of an input 
speech represented by multiple acoustic-feature planes 
(MAFP) is compressed by using KLT, then classified. In 
the experiments performed on a Japanese E-set (12 
consonantal parts of /Ci/) extracted from continuous 
speech, the MAFP significantly improved the error rate 

from 34.5% and 29.6% obtained by X(t,f) and X(t,f)+A, 
X(t,f) to 17.0% for unknown speakers (dimension=64). 

1. INTRODUCTION 

the concept of MAFP and its implementation: section 3 
explains the experimental setup; and section 4 gives the 
results and discussion 

2. Multiple Acoustic-Feature 
Planes (MAFP) 

2.1 Concept of MAFP 

Figure 1 shows a conceptual schema of MAFP. In the 
figure, the time-spectrum pattern of an input speech /bjj,! 
is mapped onto four acoustic-feature planes that 
correspond to the four types of acoustic evidence: (I) RF 
- sharply rising (+) and falling (-) sound, (2) AF - sharply 
ascending FM sound, (3) DF - sharply descending FM 
sound, and (4) SP - spectral peaks in steady sound or 
sound changing slowly in time-spectrum space. Because 
these acoustic evidences on the MAFP are considered to 
play a major role in phoneme discrimination [5], if they 
can be captured by using some feature extraction 
mechanism, we can achieve precise speech recognition. 

Speech recognition systems have long incorporated the 
time-spectrum pattern as acoustic features, but in recent 

years have introduced dynamic features: A-cepstmm, A- 
power. etc. [ 1],[2]. On the other hand, the auditory nerve 
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responding to the stimuli of ascending FM sound, 
descending FM sound, sharply rising sound (on-type), 
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sharply falling sound (off-type), etc. are well known in 
addition to spectral peaks in steady sound [3],[4]. This .^.. 
paper describes an attempt to incorporate such functions -’ 
of the auditoT nerve system into the feature estractor in \-+ ‘, . . 

order to establish the precise speech recognition. 
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The functions incorporated into a feature extractor are 2 

realized by four types of derivative operators that time-spectrum z 
correspond to sharpI!. risin, (r and falling sound (RF). pattern /bjaj: 
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sound changing slowly in time-spectrum space (SP). The 
cicrivati\,e operators are app!ied to a time-spectrum 
pattern Wt.11 of the output of BPFs and the resultant Figure I (.‘onceptual schema of MAFP 

acoustic cue of an input speech is represented I?> .It4 t--P: .Ilrr ltiplc .4 colcstk-~cdirrc Phtttcs 

multiple acoustic-feature planes (MAFP) 
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Figure 2 Speech recognition system 
incorporating MAFP. 

2.2 Incorporating the MAFP into a Speech 
Recognition System 

One of the early speech recognizer used ?X(t,t)/?t and 

ZX(t,f)lif as parameters in the phoneme recognition stage 
[6]. In recent years, the concept of orientation pattern has 
been proposed [7]. In this concept, the absolute value 

vl(t,f) ( = [(ZX(t,f)/c@ + (sX(t,f)/&)2 ]‘j2 ) and the 

orientation v2(f,f) ( = arctan dX(t,f)/k?f/ CX(t,f)/& ) form a 
vector, so the orientation is devided, or quantized into N 
directions and only the i-th direction to which the vector 
belongs has the value of v,(t,f), while the value for the 
other directions is 0. In the case of N=8, for example, the 

i-th element of the orientation pattern ei(t,f) (i=1,2,..,8) is 
given by: 

0i(t,f) - 

i 

v,(t,f) (i-l) 7t/4 - x/8 5 v2(t,tJ 

-< (i-1)x/4+x/8 
0 otherwise (1) 

The proposed feature extractor providing MAFP is 

designed by using four types of 3x3 derivative operators, 

not by using two types of one-directional (1 x2) derivative 
operators. Figure 2 shows an example of the speech 
recognition system incorporating the MAFP. In the figure, 
the feature extractor is composed of four three-level 
derivative operators used for the edge enhancement in 
image processing [8]. The four operators are expected to 
capture the four types of acoustic evidence. X(t.0 on the 
rirre-snectrum pattern has the following eight 
.‘L’ ~~iY>cvt:oocis 
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X(t-I, f+1> X( t ) f+l) X(t+1, Fl) 
M(t-I. 1‘ ) X( t, f ) X(l+i, f ) 
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.An element X’(t.r) of an acoustic-feature plane (AFP) is 
,gi \ ell t.y 

(?J) merged MA FP pattern 

Figure 3 Time-spectrum pattern 
and merged MAFP. 

X’(t,f) = i & X(t+i. f+j) W(t+i. f+j) (3) 
I=-\ j=., 

where, W(t,f) is the three-level operator corresponding to 
each AFP X’(t,r) as shown in Figure 2. A positive sign of 
X’(t,f) means a positive slope, negative sign a negative 
slope. For example, a clear spectra1 peak in steady sound 
is represented by a pair of positive and negative values in 
SP-AFP. Figure 3 shows an example of MAFP that 
represents the utterance /geist/ ([gaist]). In the figure, (a) 
is an original time-spectrum pattern and (b) represents a 
pattern into which the four AFPs (RF-, AF-, DF-, and SP- 
AFP) are merged. 

Because MAFP has too many dimensions of 1248 
(=26ch.* 12fkme*4AFP) to directly execute computation 
at the classification stage, the number of dimensions needs 
to be reduced. Before executing the reduction by using 
Karhunen-Loeve transform WV> recombination 
suitable for each time-frequency resolution of AFPs is 
applied (Table 1). SP-AFP needs a high resolution on the 
frequency axis, while RF-AFP requires a high resolution 
on the time axis. The number of dimensions after the 
recombination becomes 488. AtIer KLT, the reduced 
feature-vector with the dimensions of 32 - 80 is given. In 

this paper, the evaluation test for phonetic segments is 
performed with a classifier based on KWGPD competitive 
training [9]. 

Table 1 Recombination of the dimension of 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-.................................................. 

RF-AFP 6 I2 
AF-AFP I3 I? 
DF-AFP 13 I2 
S P-AFP 26 4 
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Figure 4 BPF specification 1 d 

3. Experiments 

3.1 Speech Database 

The experiments were carried out with two sets of 
database extracted from continuous speech manually. 

(4 Japanese V-set: 5 vowels and an independent nasal 
sound /N/. The number of speakers was 20 (10 males 
and IO females) and the total number of samples was 
1161. 

(b) Japanese E-set: 12 consonantal parts of Ci: #i, ki shi, 
chi, ni, hi, mi, ri, gi, ji, bi, pi. The number of speakers 
was 8 (4 males and 4 females) and the total number 
of samples was 425. 

3.2 Experimental Setup 

Speech was sampled at 11 kHz and a 256-point FFT of 
the 24 ms Hamming-windowed speech segments was 
applied. The frame-rate was 8 ms. 
BPF design: Two types of BPF banks were tested. Both 
were 26 critical-band filters as shown in Figure 4 - (a). 
Type-11 has rather wide band-widths in the low 
frequencies to give stability in high pitch speech [lo]. 

Because it is important for the application of 3x3 
derivative-operators not to include more than one event 

within a 3x3-window, the center frequencies in Figure 4 - 
(b) as well as the frame rate were decided by investigating 
many time-spectrum patterns. 
Acoustic features evaluated: The Following four 
acoustic features were evaluated with V-set and E-set 
databases. 
- Time-spectrum pattern (1‘S) 
- TC - .I, -parameter (T!+1) 
- 4-:\I-I’-merged pattern (merged JIXT:l’, (h) in t‘ig .? J 
- hlAFP (Type-l and Type-11 BPF bank) 
-M.AFP+TS 

&-parameters were computed by A,= X(t-3. t) - X(tL2.f) 

T 
5. . 
B 
t 

I; 
! (8) Center frequencies 

1 5 9 13 17 21 25 ChannelNo. 

4. Results and Discussion 

The evaluation experiments were controlled with the 
deleted interpolation technique and were performed for 
unknown speakers (open test). 

l BPF : Table 2 shows the results of BPF comparison for 
the acoustic features of MAFP. The table shows that 
Type- 11 with wider band-widths in the low frequencies 
has a more stable performance than Type- I. The BPF type 
was therefore fixed to Type- II in the following 
experiments and discussions. 

Table 2 BPF Comparison for MAFP (error rate) 
Feature dimension 

Data BPF 32 48 64 80 

V-set : Type- I 17.9 17.4 17.5 16.8 
Type-II 16.7 15.9 15.8 15.7 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

E-set : Type- I 21.9 19.2 . 17.5 17.5 
Type-11 18.8 18.2 17.0 15.8 

l TS : Figure 5 shows error rates for different acoustic 
features. Because speech samples in the V-set include 
weak utterances and nasalized vowels as well as vowels in 
various contexts, the error rate was comparatively high. 

l TS+A,: A,-parameter improves the error rate in the E-set 

test (Figure 5 - (b)). On the other hand, A,-parameter is 
not effective for steady sound and could not improve the 
performance of the \‘-set (Figure 5 - (a)) 

l merged \l:\FP: Tiit merged X1 IFI ho~\Il 111 F-igirc‘ 3 

- (b) is significantly improved the error rate both of the 
V-set and E-set 

l MAFP: The \lAFP improved the performance even 
further. The improvement was about one half in the error 
rate compared \vith the TS pattern for both of the V-set 
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Figure 5 Error rates for different acoustic features 

and E-set. In the experiments on the E-set, for example, 
the MAFP significantly improved the error rate from 

34.5% and 29.6% obtained by TS and TS+A, to 17.0% 
(dimension=64). 
The reason for this high performance is considered to be 

that each AFP constructs a topological subspace and the 
MAFP represents good-natured acoustic cues. 

l Compactness of MAFP : When TS pattern is added to 

other acoustic features (A,-parameter, merged MAFP, 
etc.), because such acoustic features do not include all the 
acoustic cues, the error rate is decreased in general. Table 
3 compares the results between MAFP and MAFP+TS. 
The results show that the MAFP holds phonetic 
information without original TS patterns. 

Table 3 MAFP vs. MAFP+TS ( error rate “4~) 
(BPF: Type-II) Feature dimension 

Data Feature 32 48 64 80 

V-set : MAFP 16.7 15.9 15.8 15.7 
MAFP+TS 18.4 16.9 16.5 16.1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

E-set : MAFP 18.8 18.2 17.0 15.8 
MAFP+TS 20.4 18.4 17.0 15.8 

5. Conclusion 

.I new framework for incorpcrating the functions of the 
auditory neT\:e system into the feature extractor ol‘ speech 
recognition was proposed. The proposed method of 
multiple acoustic-feature planes (MAFP) showed 
significant improvements in the experiments with Japanese 
V-set and E-set speech databases. 
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