IMPROVED AUTOMATIC TARGET RECOGNITION USING SINGULAR VALUE

MITANARAIADAQTMTANT
DLILOUULWVIEUDL I LUILIN

..... DLobommaed Aol I
vyuy uuubuuyur 3 LATTIGU .

!Electrical Engineering

WT TAAMD NII. a9a an
YWL/AAUR, DIAE 29, 24U

ABSTRACT

A new algorithm is presented for Automatic Target Recog-
nition (ATR) where the templates are obtained via Singu-
lar Value Decomposition (SVD) of High Range Resolution
(HRR) proﬁles SVD analysis of a large class of HRR data
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the largest singular value accounts for more than 90% of
target energy. Hence, it is proposed that the Range-space
eigen-vectors be used as templates for classification. The
effectiveness of data normalization and Gaussianization of
profile data for improved classification performance is also
studied. With extensive simulation studies it is shown
that the proposed Eigen-template based ATR approach pro-
vides consistent superior performance with recognition rate
reaching 99.5% for the four class XPATCH database.

1. INTRODUCTION

Traditionally, air to ground acquisition of ground target
information is categorized into two general areas: Mov-
ing Target Indicator (MTI) and Synthetic Aperture Radar
(SAR) 1, 2, 5, 9]. MTI has coarse target detection and
range determination capabilities. It makes use of target
movement for image formation and hence, it is hi_gh_ly ef-
fective for dlstmgulshmg moving targets from ground clut-
ter. However, a major drawback of the MTI technology
is its lack of target recognition capability. On the other
hand, SAR’s ability to image ground targets with range
and cross-range information gives it very good targei recog-
nition and identification capabilities, although its tremen-
dous processing requirements prevent it from being used
as a wide area surveillance technology [2]. Furthermore,
SAR’s effectiveness is limited to stationary targets because

target movement causes Hnrnn_g n the Cross-range domain

targ ement causes blurrir nge domain
mal\lng recognition a difficult task.

High Range Resolution (HRR) technology is being devel-
oped and promoted by the Model Based Vision Laboratory,

Wright-Patt ATB, as a potential target recognition capabil-
ity that promises to bridge the gap between MTI and SAR,

hat promises to bridge gap between MTI an
HRR-ATR technology is based on processing the informa-
tion contained in the range profiles themselves without gen-
erating the cross-range information that cause blurring in

SAR for moving targets. Ilence, the primary advantage
of HRR-based ATR is expected to be superior ATR perfor-
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mance for moving targets although at the preliminary stage
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of this project, the effectiveness of HRR-ATR is being tested
for stalionary targets, as reported in this paper.

In this work, a new air-to-ground HRR-ATR algorithm is
proposed, where the template features are obtained via SV
of HRR training profiles. The SVD operation projects the
information content in an IIRR profile matrix onto orthogo-
nal basis spaces decoupled in the range and angle domains.
Theoretically, the range-space eigenvectors constitute the
”optimal” features in the range domain [11]. SVD analysis
of a large class of the XPATCH database indicates that over
90% of target energy is accounted for only by the largest
singular value. Hence, we propose to use the range-space
cigen-vector corresponding to the largest singular value as
templates for target classification. Our studies also show
that appropriate pre- processing of detected HRR data can
be highly effective in improving ATR performance. We in-
vestigate the effectiveness of normalization of range profiles
as well as (Gaussianization using Power Transform (PT) op-
eration [4, 13] in enhancing classification performance. It is
demonstrated that for detected-HRR data, Gaussianization
using low P'T coefficient followed by normalization enable
simple matched filtering (MF) to provide excellent clas-
sification performance when compared with linear Least-
Squares (LS) based classification algorithms. Our studies
further indicate that the Figen-template based approach
delivers superior ATR performance when compared with
algorithms that use Mean templates [13]. The simulated
XPATCH database (unclassified) has been used to conduct
all the simulations and for this 4-class database. over 99%
ATR efficiency has been achieved using the proposed eigen-
template based approach.

2. PRE-PROCESSING OF HRR PROFILES

All results reported in this paper were performed using the
XPATCH database containing simulated Complex Phase
History (CPH) of four Target classes, M1-Tank (M1), T'72-
tank (T72), School Bus (SB) and Fire Truck (FT). Figure

he nrocess of gsenerating detected HRR nrofiles

1 denicts
tiie process ol generating qetected hink proiues

1 depicts
(range vs. angle) and SAR data (range vs. cross-range)
from the raw CPH (frequency vs. angle). The modules for
generating HRR Figen-Templates are also included. Note

that 2D FFT is needed to generate SAR images whereas
only 1D FFT is necessary for HRR profiles. with consider
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able front-end computational savings for the later case.



2.1. Power Transform operation

As shown in Fig. 1, Detected-HRR data are formed us-
ing absolute value of the Complex HRR data. Detected
HRR is positive valued and tend to be Ravlelzh distributed
for which optimum detection and estimation results are not
usually straight-forward. On the other hand, many com-
monly used detection and estimation algorithms possess op-
timality properties for the Gaussian case [7]. Interestingly,
in Pattern Recognition context it has been shown that any
distribution can be converted to close to normal by using
the following Power Transform (PT) of the data {4],

Y =X°,
where, v denotes the PT-coefficient. It has also b v
in [11] that the Gaussianity property of ¥ enhances with
reduction in the value of the PT-coefficient v. Hence, the
HRR training data were tested for Gaussianity in order to
determine appropriate value of v so as to achieve improved
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Fig. 1: HRR,
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Two types of Tests were conducted to obtain the optimum
value of the PT-coefficient, Chi-square Analysis [3, 6] and
Bispectrum Analysis [8]. Chi-Square is a standard test for
Gaussianity, whereas the Bispectrum based test exploits an
important property of Gaussianly distributed random vari-
ables that their third-order moment as well as Bispectrum
are theoretically zero [8]. Both tests were conducted for
a set of values of v over an ensemble of IIRR realizations
[13]. The decision whether a realization is gaussian or not
was based on some pre-determined thresholds [3, 8]. Both
tests indicated that the detected HRR data tend to be more
Gaussian as the value of v is lowered, as predicted theoreti-
cally by Fukunaga. In our Chi-square tests with XPATCH-
HRR data, the optimum value of v was found to be 0.08,
as depicted by Figure 2. This resuit was also corroborated
by the Bispectrum based test (results not included due to

space limit ahmﬂ
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Fig. 2: Probability of passing the Chi-Square test

2.3. Template Normalization

In case of HRR profiles, the crucial information on the dif-
ferences between various target classes are contained in the
respective range profile structures. The relative amplitndes
in the range profiles depend on the strengths of the radar re-
turns from the scattering centers and the relative positions
of the scattering centers of a particular target. However,
the total template energy of one target may be significantly
stronger than other classes, due to amplification or attenua-
tion during data collection. In that case, the signal strength
(or energy) and not the relative variations in range profile
structures may dominate and overwhelm the ATR decision
process. Figure 3(a) depicts a possible scenario where un-

normalized templates for four target classes are represented

by the blobs. The lines connecting the centroids of the blobs
to origin represent the energy whereas the blobs themselves
and the angles made with the axes signify the variations
in scattering returns for different targets. For this assumed
but typical scenaric, T72 appears to dominate due to its to-
tal signal energy whereas the School Bus profile has the least
energy. If ATR decision is made by correlating these tem-
plates with an observed range profile to look for a maxima
(i e, Match Frltermg) T72 will tend to dominate regard-
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(a) (b)
Fig. 3: Effect of Normalization on target recognition, (a)
before Normalization (b) after Normalization
The scaling problem depicted in Fig. 3(a) is usually resolved
using some form of least-squares (LS) algorithm using a lin-
ear model [13]. However, the linear model assumption ap-
pears to be ad hoc and is not necessarily unique, depending

nassibly an data t 1 1 1 1
possibly on data type which in turn may affect classification

performance. Instead, we propose to use normalized tem-
plates, as depicted by Fig. 3(b), where the template pro-
files for all targets are normalized to have same length (i.e.,
energy) while preserving their angular separations and rel-
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blobs. If an observed profile is to be compared with these
templates to make an ATR decision, then simple matched
filtering (MF) will be sufficient for the purpose. It may
be noted here that normalization of templates can be per-
{formed off-line and furthermore, MF requires less on-line

processing than LS because no matrix inversion is neces-
sary.

3. MEAN TEMPLATE BASED CLASSIFIER

Currently, one of the most common approaches for HRR
Template formation is via averaging of the range profiles



over a section of contiguous aspect angles and these are
called Mean-Templates [13]. In this case, Power Transform
with PT coefficient v = 0.2 had been applied to the detected
HRR profiles before forming the mean templates. However,
the template vectors for all classes were not normalized to
the same length. Since the Mean-Template energies may
vary between target classes, ATR decisions are based on 2
Linear LS fit, with associated drawbacks as discussed in the
previous section (see Simulation Section for comparison of

results).

4. CLASSIFICATION USING
EIGEN-TEMPLATES

Singular Value Decomposition (SVD) is a very effective and
robust tool for decomposing any matrix into orthogonal ba-
sis spaces [10]. Let X be an N x M matrix conta.ining de-
tected range pr()lues at M a,rlgui‘d.r looks COTlLa.uilus N range

gates each. The SVD operation would produce a basis de-
composition into three matrices,

SVD

X = UAVT  where, (2)
U 2 EVIXXT]={m u un} e RVY  (3)
v 2 puiXTXl=Iv., vo --- vile RMXM (4
v SV AT v V2 vMy < \xJ
A = diaghi A Amm] € RVN*M (5)

where, EV[.] denotes the operation ”Eigenvectors of”. For
range vs. angle HRR data, the left eigenvectors in U span
the orthogonal basis space in the range domain while the
right eigenvectors in V span the angle space. Ais a diagonal
matrix containing M (or N, depending on which is larger.
N > M is assumed here implicitly) Singular Values in de-
creasing order, A11 > A2 > --- > Amum, With Ay represent-
ing the weights associated mtl. the :-th eigenvector. Larger
singular values imply significant contribution of that partic-
ular eigenvector in forming the target signal. Hence those
are denoted as “signal subspace” eigenvectors [12]. Interest-
ingly, the range-space and angle-space eigenvectors appear
in decoupled form after the SVD transformation is applied
to X, as shown in (2). Hence, the primary focus of this
work has been to exploit the information contained in the

decoupled range basis space vectors in U to perform ATR.
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tribution of Singular Values (b) A Typical Eigen Template

SVD analysis of detected-HRR data for all four classes of

the XPATCH database has consistently revealed that only
1 out of more than 100 singular values account for more
than 90 percent of target energy! This is illustrated in Fig.
4(a) where the singular values of a typical detected HRR

data are displayed. The range-space eigenvector (u1) cor-
responding to the largest singunlar value is also plotted in
Fig. 4(b). As expected, this vector possesses all the char-
acteristics of a range profile because it happens to be the
maximized projection on to the range domain. Hence, we
propose to use U of each of the tra.ining sectors as templates

eigenvectors as templa.tes appears to be new in HRR ATR.
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4.1. Advantages with Eigen-Template based ATR
There are several key advantages in using eigen-templates
for classification. First, from minimum Mean-Saguared Fr-

Ior classificatlon. rst, Irom minmimum Mean squared or

ror context it has been theoretically shown that the eigen-
vectors of the correlation matrix corresponding to the larger
eigenvalues are the optimal choice for feature selection [11].
It may be observed from (3) that the range-space (or left)

eigen vectors nroduced l’\v the SVD oneration are indeed

eigen vectors produced D operation are indeed
found from the correla.tlon matrix of the training data. Sec-
ondly, Eigen-template formation via SVD involves finding
a set of orthonormal basis vectors that best describe the
sub-space projection of the target space. The SVD opera-

tion in nnmnrn‘n"u robust and it inherently decouples the
fion 1n numerica 1t inherently decoupics tne

target basis space (correspondlng to the large singular val-
ues) from the noise or clutter subspace (corresponding to
smaller singular values) [12]. Furthermore, the range-space
eigen-vector corresponding to the largest singular value con-
tains the maximum orthogonal projection—information—
from the range space of the target-sector under consider-
ation. In addition, range-space eigen-templates produced
by the SVD operation for all target classes are automat-
ica.lly normalized to the length of unity, regardless of the
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differences between target classes is contained within the
amplitude variations in the range profiles.

Another advantage of the normalized eigen-template
based approach is that Matched ﬁltering (or location of
maximum correlation) gives the optimum result and no
on-line least-squares matrix-inverse operation is necessary.
It may also be emphasized here that Eigen-templates are
formed off-line and no on-line Eigen-decomposition is nec-
essary. In our work with Eigen-template for classification
using the XPATCH database, we have observed significant
and consistent improvement in classification performance
when compared with ATR using Mean-templates. The re-
sults are summarized in the next section.

5.1. Template and Test Data Generation

The four target XPATCH database contains simulated
radar returns at 100 frequencies per look-angle with angu-
lar resolution between adjacent locks being 0.04°. Hence,
encompassing the entire 360° of look angles, the XPATCH
generated CPH matrices are of size 100 x 9000 for each
target. As shown in Fig. 1, HRR data (range vs. angle)
is formed by performing 1D FFT in the frequency domain

to cenerate the ranege information. This is done for each
Lo generatle tne range mtocrmat cn inis agne ior each

of the look angles followed by the absolute value and PT
operations to form the detected-HRR matrix, also of size
100 x 9000. Templates are formed out of each 2.5° sec-
tor. However, for this simulated ATR run, the test (or



observation) profiles are formed by taking every 20th pro-
file (starting from 1st and then 21st, 41st and so on) out
of the 100 x 9000 detected HRR matrix. Hence, there are
425 test profiles. The remaining matrix is broken down into
144 sectors where each sector (representing approximately
2.5°) is of the size 100 x 59. Hence, in our simulations for a
particular PT coefficient v, the templates are formed using
these 144 sectors and the ATR tests are conducted using all
of the 425 test profiles.

Mean template for each sector is generated simply by av-
eraging the 59 range profiles in that sector to form a 100 x 1
template profile vector. The eigen-template for the corre-
sponding sector is formed by performing SVD of the 100x59
sector matrix and then the left eigenvector corresponding
to the largest singular value is used as the eigen-template
for that sector. Note that eigen-templates are unit norm
whereas the mean-templates have to be normalized.
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Fig. 5: P. and Pp using Mean Templates. (a) LS without

Normalization and (b) with Normalization. (¢) MF with
Normalization. v = 0.08, 0.1 and 0.2, for all cases.
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that Matched Filter performs quite poorly without normal-
ization for both Mean and Eigen templates and hence, those
results are not included here. According to Figs. 5 and 6,
the best results using Eigen and Mean templates are the
ones marked as (c) which use Matched filtering with nor-
malized templates. In Fig 7, these two cases are compared
separately to show that the performance of the eigen-based
approach is superior than that of the Mean-based technique.
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Fig. 7: Comparison of Performance using Matched Filter
using (a) Eigen and (b) Mean templates.
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