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ABSTRACT 

A new algorithm is presented for Automatic Target Recog- 
nition (ATR) where the templates are obtained via Singu- 
lar Value Decomposition (SVD) of High Range Resolution 
(HRR) profiles. SVD analysis of a large class of HRR data 
reveals that the Range-space eigenvectors corresponding to 
the largest singular value accounts for more than 90% of 
target energy. Hence, it is proposed that the Range-space 
eigen-vectors bc used as templates for classification. The 
effectiveness of data normalization and Gaussianizat.ion of 
profile data for improved classification performance is also 
studied. With extensive simulation studies it is shown 
that the proposed Eigen-template based ATR approach pro- 
vides consistent superior performance with recognition rate 
reaching 99.5% for the four class XPATCH database. 

1. INTRODUCTION 

Traditionally, air to ground acquisition of ground target 
information is categorized into two general areas: Mov- 
ing Target indicator (MTI) and Synthetic Aperture Radar 
(SAR.) [I, 2. 5, 91. MT1 has coarse target detection and 
range determination capabilities. It makes use of target. 
movement for image formation and hence, it, is highly ef- 
fective for distinguishing moving targets from ground clut- 
ter. However, a major drawback of the MT1 technology 
is its lack of target recognition capability. On the other 
hand, SAR’s ability to image ground targets with range 
and cross-range information gives it very good targci recog- 
nition and identification capabilities, although its tremen- 
dous processing requirements prevent it from being used 
as a wide area surveillance technology [2]. Furthermore, 
SAR’s effectiveness is limited to stationary targets because 
target movement causes blurring in the cross-range domain 
making recognition a difficult task. 

High Range Resolution (EIRR) technology is being devel- 
oped and promoted by the Model Based Vision Laboratory, 
Wright-Patt AFB, as a potential target recognition capabil- 
ity t.hat oromiscs to bridge the gap between MT1 and S:ZR. 
HRK-ATR technology is based on processing the informa- 
tion cont.ainetl in tt? range profiles themselves wi+hout gen- 
erating the cross-range information that cause blurring in 
SAR for moving targets. Hence, the primary advantage 
of HRR-based ATR is expected to be superior ATR perfor- 
mance for moving t.argets although at the preliminary stage 

of this project, the effectiveness of HRR-ATR is being tested 
for stationary targets, as reported in this paper. 

In this work, a new air-to-ground HRR-ATR algorithm is 
proposed, where the template features are obtained via SVD 
of HRR training profiles. The SVD operation projects the 
information content in an IIRR profile matrix onto orthogo- 
nal basis spaces decoupled in the range and angle domains. 
Theoretically, the range-space eigenvectors cor1stitut.e the 
“optimal” features in the range domain [Ill. SVD analysis 
of a large class of the XPATCII database indicates that over 
90% of target energy is accounted for only by the largest 
singular value. Hence, we propose to use the range-space 
cigen-vector corresponding to the largest singular value as 
templates for target classification. Our studies also show 

that appropriate pre-processing of detected HRR data can 
be highly effective in improving .Y1’K performance. LVc in- 
vestigate the effectiveness of normalization of range profiles 
as well as Gaussianization using Power Transform (PT) op- 
eration [4, 131 in enhancing classification performance. It is 
dcmonstrat.ed that for detected-HRR data, Gaussianization 
using low PT coefficient followed by normalization enable 
simple matched filtering (\IF) to provide excellent clas- 
sificatiou performance when compared with linear Least.- 
Squares (L.S) based classification algorithms. Our studies 
further indicate that the Eigen-template based approach 
delivers superior ATR performance when compared with 
algorithms that use Mean templates [13]. The simulated 
XPATCH database (unclassified) has been used to conduct 
all the simulations and for this -i-class database. over 99% 
A’1’R efficiency has been achieved using the proposed eigen- 
template based approach. 

2. PRE-PROCESSING OF HRR PROFILES 

AU results reported in this paper were performed using the 
XPATCH databue containing simulated Complex Phase 
History (CPH) of four Target closes. 511-Tank (hII): T72- 
tank (T72), School Bus (SB) and Fire Truck (FT). Figure 
1 depicts the process of generat.ing detected IIRR profiles 
(range vs. angle) and SAR data [range vs. cross-range) 
from the raw CPU (frequency vs. angle). The modules for 
generating HRR Eigcn-‘remplates are also included. Note 
t,hat. 2D FFT is needed to generate SAR images whereas 
only ID FF’T is necessary for I-IRR profiles, with considcr- 
able front-em1 computational savings for the later case. 



2.1. Power Transform operation 

As shown in Fig. 1, Detected-HRR data are formed us- 
ing absolute value of the Complex HRR data. Detected 
HRR is positive valued and tend to be Rayleigh distributed 
for which optimum detection and estimation results are not 
usually straight-forward. On the other hand, many com- 
monly used detection and estimation algorithms possess op 
timality properties for the Gaussian case [7]. Interestingly, 
in Pattern Recognition context it has been shown that any 
distribution can be converted to close to normal by using 
the following Power Transform (PT) of the data (41, 

Y = X”, (0 < v < 1) (1) 

where, v denotes the PT-coefficient. It has also been shown 
in [Ill that the Gaussianity property of Y enhances with 
reduction in the value of the PT-coefficient v. Hence, the 
HRR training data were tested for Gaussianity in order to 
determine appropriate value of v so as to achieve improved 
ATR performance. 
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Fig. 1: HRR, SAR and Eigen Template Generation 

2.2. Tests for Gaussianity 

Two types of Tests were conducted to obtain the optimum 
value of the PI’-coefficient, Chi-square Analysis [3, 6] and 
Bispectrum Analysis [B]. Chi-Square is a standard test for 
Gaussianity, whereas the Bispectrum based test exploits an 
important property of Gaussianly distributed random vari- 
ables that their third-order moment as well as Bispectrum 
are theoretically zero [B]. Both tests were conducted for 
a set of values of 2, over an ensemble of HRR realizations 
[13]. The decision whether a realization is gaussian or not 
was based on some pre-determined thresholds [3, 81. Both 
tests indicated that the detected HRR data tend to be more 
Gaussian as the value of v is lowered, as predicted theoreti- 
cally by Fukunaga. In our Chi-square tests with XPATCH- 
HRR data, the optimum value of v was found to be 0.08, 
as depicted by Figure 2. This result was also corroborated 
by the Bispectrum based test (results not included clue to 

Fig. 2: Probability of passing the Chi-Square test 

2.3. Template Normalization 

In case of HRR profiles, the crucial information on the dif- 
ferences between various target classes are contained in the 
respective range profile structures. The relative amplitudes 
in the range profiles depend on the strengths of the radar re- 
turns from the scattering centers and the relative positions 
of the scattering centers of a particular target. However, 
the total template energy of one target may be significantly 
stronger than other classes, due to amplification or attenua- 
tion during data collection. In that case, the signal strength 
(or energy) and not the relative variations in range profile 
structures may dominate and overwhelm the ATR decision 
process. Figure 3(a) depicts a possible scenario where un- 
normalized templates for four target classes are represented 
by the blobs. The lines connecting the centroids of the blobs 
to origin represent the energy whereas the blobs themselves 
and the angles made with the axes signify the variations 
in scattering returns for different targets. For this assumed 
but typical scenario, T72 appears to dominate due to its to- 
tal signal energy whereas the School Bus profile has the least 
energy. If ATR decision is made by correlating these tem- 
plates with an observed range profile to look for a maxima 
(i.e., Match Filtering), T72 will tend to dominate regard- 
less of the actual target producing the observation profile. 
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Fig. 3: Effect of Normalization on target recognition, (a) 
before Normalization (b) after Normalization 
The scaling problem depicted in Fig. 3(a) is usually resolved 
using some form of least-squares (LS) algorithm using a lin- 
ear model [13]. However, the linear model assumption ap- 
pears to be ad hoc and is not necessarily unique, depending 
possibly on data type which in turn may affect classification 
performance. Instead, we propose to use normalized tem- 
plates, as depicted by Fig. 3(b), where the template pro- 
files for all targets are normalized to have same length (i.e., 
energy), while preserving their angular separations and rel- 
ative variations in scattering returns as represented by the 
blobs. If an observed profile is to be compared with these 
templates to make an ATR decision, then simple matched 
filtering (MF) will be sufficient for the purpose. It may 
be noted here that normalization of templates can be per- 
formed off-line and furthermore, MF requires less on-line 
processing than LS because no matrix inversion is neces- 
sary. 

3. MEAN TEMPLATE BASED CLASSIFIER 

Currently, one of the most common approaches for HRR 
Template formation is via averaging of the range profiles 



over a section of contiguous aspect angles and these are 
called Mean-Templates [13]. In this case, Power Transform 
with PT coefficient v = 0.2 had been applied to the detected 
HRR profiles before forming the mean templates. However, 
the template vectors for all classes were not normalized to 
the same length. Since the Mean-Template energies may 
vary between target classes, ATR decisions are based on a 
Linear LS fit, with associated drawbacks as discussed in the 
previous section (see Simulation Section for comparison of 
results). 

4. CLASSIFICATION USING 
EIGEN-TEMPLATES 

Singular Value Decomposition (SVD) is a very effective and 
robust tool for decomposing any matrix into orthogonal ba- 
sis spaces [lo]. Let X be an N x M matrix containing de- 
tected range profiles at M angular looks containing N range 
gates each. The SVD operation would produce a basis de- 
composition into three matrices, 

x svp UAVT where, (2) 

U 2 EV[XX=] = [ul u2 ... UN] E IR NxN (3) 

a 
V = EV[XTX] = [v, v2 . . v,~] E IR MxM (4) 

h = diUg[Xll x22 “. &VfM] E RNxM (5) 

where, EV[.] denotes the operation “Eigenvectors of’. For 
range vs. angle HRR data, the left eigenvectors in U span 
the orthogonal basis space in the range domain while the 
right eigenvectors in V span the angle space. A is a diagonal 
matrix containing M (or N, depending on which is larger. 
N > J4 is assumed here implicitly) Singular Values in de- 
creasing order, Xii _> Xzz 2 .. 2 XMM, with Xii represent- 
ing the weights associated with the i-th eigenvector. Larger 
singular values imply significant contribution of that partic- 
ular eigenvector in forming the target signal. Hence those 
are denoted as “signal subspace” eigenvectors [12]. Interest- 
ingly, the range-space and angle-space eigenvectors appear 
in decoupled form after the SVD transformation is applied 
to X, as shown in (2). Hence, the primary focus of this 
work has been to exploit the information contained in the 
decoupled range basis space vectors in U to perform ATR. 
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Fig. G: XPATCH ‘I’arget T72, GO - 62.5’ sector (a) Dis- 
tribution of Singular Values (b) A Typical Eigen Template 
SVD analysis of detected-HRR data for all four classes of 
the XPATCH database has consistently revealed that only 
1 out of more than 100 singular values account for more 
than 90 percent of target energy! This is illustrated in Fig. 
4(a) where the singular values of a typical detected HRR 

data are displayed. The range-space eigenvector (ul) cor- 
responding to the largest singular value is also plotted in 
Fig. 4(b). As expected, this vector possesses all the char- 
acteristics of a range profile because it happens to be the 
maximized projection on to the range domain. Hence, we 
propose to use ui of each of the training sectors as templates 
for performing ATR. This approach of utilizing range-space 
eigenvectors as templates appears to be new in HRR-ATR. 

4.1. Advantages with Eigen-Template based ATR 

There are several key advantages in using eigen-templates 
for classification. First, from minimum Mean-Squared Er- 
ror context it has been theoretically shown that the eigen- 
vectors of the correlation matrix corresponding to the larger 
eigenvalues are the optimal choice for feature selection [ll]. 
It may be observed from (3) that the range-space (or left) 
eigen vectors produced by the SVD operation are indeed 
found from the correlation matrix of the training data. Sec- 
ondly, Eigen-template formation via SVD involves finding 
a set of orthonormal basis vectors that best describe the 
sub-space projection of the target space. The SVD opera- 
tion in numerically robust and it inherently decouples the 
target basis space (corresponding to the large singular val- 
ues) from the noise or clutter subspace (corresponding to 
smaller singular values) [12]. Furthermore, the range-space 
eigen-vector corresponding to the largest singular value con- 
tains the maximum orthogonal projection.--information- 
from the range space of the target-sector under consider- 
ation. In addition range-space eigen-templates produced 
by the SVD operation for all target classes are automat- 
ically normalized to the length of unity, regardless of the 
signal strength of radar return. Hence, information on the 
differences between target classes is contained within the 
amplitude variations in the range profiles. 

Another advantage of the normalized eigen-template 
based approach is that Matched filtering (or location of 
maximum correlation) gives the optimum result and no 
on-line least-squares matrix-inverse operation is necessary. 
It may also be emphasized here that Eigen-templates are 
formed off-line and no on-line Eigen-decomposition is nec- 
essary. In our work with Eigen-template for classification 
using the XPATCH database, we have observed significant 
and consistent improvement in classification performance 
when compared with ATR using Mean-templates. The re- 
sults are summarized in the next section. 

5. SIMULATION RESULTS 

5.1. Template and Test Data Generation 

The four target XPATCH database contains simulated 
radar returns at 100 frequencies per look-angle with angu- 
lar resolution between adjacent looks being 0.04’. Hence, 
encompassing the entire 3GO’ of look angles, the XPATCH 
generated CPH matrices are of size 100 x 9000 for each 
target. As shown in Fig. 1: HRR data (range vs. angle) 
is formed by performing 1D FFT in the frequency domain 
to generate the range information. This is done for each 
of the look angles followed by the absolute value and PT 
operations to form the detected-HRR matrix, also of size 
100 x 9000. Templates are formed out of each 2.5’ sec- 
tor. However, for this simulated ATR run, the test (or 



observation) profiles are formed by taking every 20th pro- 
file (starting from 1st and then 21st, 41st and so on) out 
of the 100 x 9000 detected HRR matrix. Hence, there are 
425 test profiles. The remaining matrix is broken down into 
144 sectors where each sector (representing approximately 
2.5’) is of the size 100 x 59. Hence, in our simulations for a 
particular PT coefficient v, the templates are formed using 
these 144 sectors and the ATR tests are conducted using all 
of the 425 test profiles. 

Mean template for each sector is generated simply by av- 
eraging the 59 range profiles in that sector to form a 100 x 1 
template profile vector. The eigen-template for the corre- 
sponding sector is formed by performing SVD of the 100 x 59 
sector matrix and then the left eigenvector corresponding 
to the largest singular value is used as the eigen-template 
for that sector. Note that eigen-templates are unit norm 
whereas the mean-templates have to be normalized. 

P..“., I,.“.l.,rn C..IIICl.“l Par ,,.“.h,rn . ..“!.4.“. 

Fig. 5: Pe and PD using Mean Templates. (a) LS without 
Normalization and (b) with Normalization. (c) MF with 
Normalization. u = 0.08, 0.1 and 0.2, for all cases. 
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Fig. 6: P, and Po using Eigen Templates. (a) LS without 
Normalization and (b) with Normalization. (c) MF with 
Normalization. v = 0.08, 0.1 and 0.2, for all cases. 

5.2. ATR Performance Comparison 

Fig. 5 shows the ATR results using Mean templates in 
terms of Probability of Error (Pe) and Probability of De- 
tection (P,). The plots marked by (a) and (b) show the 
results without and with template normalization, respec- 
tively, using Least-Squares. Clearly, if LS is used normal- 
ization has very little effect. However, if IMatched Filtering 
is used with normalized mean templates, the results im- 
prove significantly as shown by Fig. 5(c). Fig. 6 shows the 
corresponding results using Eigen Templates. Once again, 
LS performs (plots a and b) poorly regardless of normal- 
ization, whereas performance with MF (plot-c) is superior 
with normalized templates. Both Figs. 5 and 6 demonstrate 
that ATR performance improves (i.e., P, reduces and PO 

increases) as the PT coefficient is reduced. It may be noted 

that Matched Filter performs quite poorly without normal- 
ization for both Mean and Eigen templates and hence, those 
results are not included here. According to Figs. 5 and 6, 
the best results using Eigen and Mean templates are the 
ones marked as (c) which use Matched filtering with nor- 
malized templates. In Fig 7, these two cases are compared 
separately to show that the performance of the eigen-based 
approach is superior than that of the Mean-based technique. 

Fig. 7: Comparison of Performance using Matched Filter 
using (a) Eigen and (b) Mean templates. 
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