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ABSTRACT

This paper describes a novel technique for noise robust
speech recognition. which can incorporate the character-
istics of noise (hxtnlmil()n directly in te.«mu(*\ ”l he feature

itapnlf of
sl o

can 1'9[)1('\0111 th(\ ])l()hdhl]li\ (lenslt\ tn 1(!1()11 of thv esti-
mated speech component in the noisy speech. Uxing the
seguence of the probability density functions of the esti-
mated speech components and Hidden Markov Mmlollm;ﬁr
of ¢lean apeech. the observation probability of the ne
speech i (.a,l( wated. In the whole process of the technique.
the explicit information on SNR is not used. The technigue
is evaluated by large vocabulary isolated word recognition
under car noise environment. and is fonnd to have clearly
outperformed nonlinear spectral subtraction (hetween 13%
and 4% veduction in recognition errors).

1. INTRODUCTION

Noise robustness in speech recognition has attracted a great
deal of interest 71]. Intmﬁ»nng noise <l('01(ules the perfor-
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there is a mismateh in the h(nmnlr (11141 I(‘\I g environnent.
[n order to compensate the mismateh. several methods have
heen studied in the two main approaches: 1) compensa-
tion
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2.3, 4. 5] is atechnique of the former kind. In this tech-
nigue. althongh the variance of noise power spectrum can
implicitly be considered in the process of calenlating over-
estimation factor [5]. the noise variance is not compensatoed
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traction stage are almost the sane ag spectral subtraction

technique in terms of the compensation of the variance of

noise power spectrum. As the .\'m'()nd category. the model
combination based approach [6. 7. 8. 9] can compensate the

riance of noice g.wnhm”u h\r InCOrpor: ,\hnn’ characteristics

varia
of the noise variance into the noisy speech mml(!l. It is ap-
plicable to a wide rage of noise environments. In the model
combination approach. however. knowledge of the SNR i3
required in order to combine noise and speech models pre-

cisely.

These previously investigated approaches are based on the
standard framework of recognition. where the featnre ex-
traction process produces a point in the featnre space. which

is input to a classifier. On the other hand. the speech com-
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ponent in the noisy speech signal desirably shonld be esti-
mated while keeping ambiguity. becanse noise has a random

weteristics which lead 10 a van
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The technique presented in this paper is a process in the
feature extraction stage. and can compensate 1he variance
of noise power spectrumn by incorporating the noise distri-
bution into the feature. In the technigne. the featnure has a
stochastic form. which can represent the probability density
function of the estimated speech component in noigy speech.
Using the sequence of the probability density funetions of
the estimated speech components and Hidden Markov Mad-
elling of clean speech. the observation probability of the
noiry speech is calenlated. In the whole process of the tech-
nigue. the explicit information on SNR is not used. This
technique will be referred to as Stochastic Feature Extrac-
tion (SFLE).
SFE applied to MFCC [10] is evalnated for speech in the
presence of car noise. Comparison in performance is made
with the non-linear spectral subtraction{d]. It way reported
{7] that parallel model combination was comparable 1o
nonlinear spectral subtraction technique nnder cay noise en-
vironment.

2. STOCHASTIC FEATURE

The observed noisy s[)("P( h signal consists of noise and clean

gpecch components.
spectral domain is represented as
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noige components in spectral (lunmm l(-‘\])(‘( hw-I\ 130( anse
n iz a random variable. s ix taken as a random variable.
Thus. the probability density function (pdf{) ol «peech com-
ponent. f.is represented using the pdfof noise. y. as follows:

fm)—{ iy —s) s€S (2)

otherwise

N

where S represents the observation space such that (y — s)
falls into the range of possible noise signal. .J is a normal-
ization factor to satisfy [\ f(s)ds = 1. In order to evalnate
the observation probability of the noisy speech uging a Hid-
den Markov Model (HMM) trained by clean speech. the ith
state ontput probability. P (y;. ). for observation y, in the



tth frame and noise pdf g. is represented as

Pilye.g) = /"i(S)!/(y/—S)r/s (3)
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where b, denotes the ontput pdf for the ith state in the
HMM. .J; denotes the normalization factor for the #th frame.
The integration in Eqnation 4 is over the entire space. In
the case that the boundaries of speech for recognition are
given. ,ll can be ignored in the decoding stage. because it
does not have the influence on recognition resnlts. There-
fore. in this cage. it 18 enough to consider ftate output prob-
ability. B3:(fi). for estimated pdl f; of the speech compo-
nent. which is represented as
Bilf) = /h,-(s)f,(s)r/s (5)
The integration is over the entire space. If the parameters
in the spectral domain. are mapped into a different domain.
such as cepstral domain. noise is not necessarily additive.
But still. the state outpot probability. 7 (). in the new
domain can be calenlated in same way as follows:
mu = [ (6)
where b and f;7 are the ontput pdf for ith state in o HMM
and the pdfof the estimated speech component in the new
domain respectively.  The infegration is over the entire
space.

If £/ is Gaussian. which is represented by N(&. ®). a
parameter get of {£. ¥} is taken as a stochastic feature. In
the case that b7 is also Ganssian. which is represented by
A 2). the state output probability is calenlated as

e, . 1
B (N(£.¥) = —p——7
(2% |® + 3|
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In the case that the state ontput pdf ix represented by a
mixture of Gaussians, the calenlation is straight-forward.
In the next section. the algorithm to obtain the stochastic
feature. which has a form of Ganssian in cepstral domain.
is deseribed.

3. IMPLEMENTATION

If the state output pdfs in clean speech HMM ix given in
cepstral domain. the pdf of the estimated speech component
in each noisy specch observation shounld he represented also
in cepstral domain. Althongh there seem to be several ways
of obtaining Ganssian representation for the pdf of the esti-
mated speech component in cepstral domain. one straight-
forward way is to calenlate mean vector and covariance ma-
trix directly in cepstral domain nging noise spectrum sam-
ples. The process of the stochastic featnre extraction ap-
plied to MFCC domain is illustrated by Figure 1.

Noise data samples in the fignre are saved into the noise
buffer during N frames before each input utterance. The

processing stages are applied 10 the observed signal at each
frame during input utterance using the saved noise data
samples in the noise butfer. The steps in the process of eal-
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Figure 1: Block-diagram of the process of calenlating Gans-
sian ftochastic feature in the MFCC domain

culating a stochastic feature for cepstral static coellicients
is sunmarised ag follows

1. Before each ntterance. filter bank power spectral vee-
tors of noise during N frames are saved into the noise
hufter.

2. During the ntterance. snbtract ecach noise spectral
vector in the noise buffer from the {ilter bank power
spectral vector of input noisy speech. obtaining N
power spectral vectors.

3. ‘Transform the N power spectral vectors into N cep-
stral vectors,

1. Calculate mean vector and covariance matrix of the
cepstrums among the N cepstroms. which results in
pdf fi for each frame.

The spectral subtraction in the process is carried ont by
nsing the following rule:

N g —=n, yo—ni > 8y,
= , . (8)
S otherwise
where y; and »; are the 7ith components of power spectral
vectors for the observed noisy speech and the noise. respec-
tively. §; is the ith component of the enhanced power spec-
tral veclor. 3 is a flooring factor. which prevents 3, from
heing negative.

When delta coeflicients ¢; and acceleration coefficients ¢y
for tth frame are calculated from static coefficients ¢; in the



stage of training HMM. hy the following equations:
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the mean vectors and covariance matrices in the stochastic
fearnre for delta coefficients. &. W, . and acceleration coefli-
cients. £ W) are calenlated nsing the stochastic feature for

static coeflicients. & Wy, by the following eqnations:

Wy Wy

g= 3" Ml . ¥= 3 W) ¥ (10)
==, r==11,
1w, W

& = Z [e2i]€e4i vy = Z (@) g, (11)
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where d, and n, are constant coefficients. W, and W, are
window length of the caleulation of delta and acceleration
parameters. The above caleulation for delta and accelera-
tion parameters is based on the assumption that the noise
signals in different frames are not corrvelated. Using the ob-
tained stochastic features. the ontpnt probability of cach
state is caleulated by Equation 7. Compared to spectral or
cepstral mean substraction the introduction of ¥ in Kqua-
tion 7 is the most important difference. The effect is that if
the noige variance of a certain feature in the feature vector
is very large. then this feature does not contribute mnch
to the ontput probabilities of the HMMs«. so the feature is
nore or less ignored.

1 EXPERIMENT AND RESULTS

The stochastic feature extraction technique deseribed in the
previons sections has been evaluated in speaker-independent.
isolated word recognition experintents nnder car noise con-
ditions. Left-to-right tied-state triphone HMMs were trained
using a clean speech database consisiting of sixty four speak-
ers, The total nnmber of states in the HMM was 2,517, All
ontput distributions were mixtures of two diagonal covari-
ance Ganssians.

The stochastic features were represented by a diagonal co-
variance Ganssian,  For each frame. a set of means and
variances for 13 MFCC coellicients. its delta and accelera-
tion coeflicients were computed as a stochastic feature. The
mean and variance for the zevoth cepstral coeflicient were
not used in the recognition stage. The total number of pa-
rameters in the featire vector for each frame is seventy six.
In the process of the calculation of the stochastic feature.
several values of 3 of the spectral snbtraction were tried.
The vocabulary size in the isolated word recognition task
was 5. 075, Six kinds of car noise were nsed. Table T shows
the environments under which noise data was recorded. The
clean speech data for test is composed of eight speakers’
speech data with 303 isolated word utterances per speaker.
The speech and noise data was recorded with the same
microphone. The different. sample in the noise data was
added artificially to each clean utterance data by appro-
priate SNR. Recognition used Viterbi decoder with beam

search. Speech bonndaries were given manually so as to in-
clude 50 msec of non-speech portions at both of beginning
and end.

Table 2 shows the results using the clean speech HTMMs
without compensation. and with non-linear spectral snb-
traction ). Table 3 shows the results nsing stochastic fea-
ture with varying the value of 3. and noise obgervation dn-
ration of 200 frames (2.000 msec). In the results. the best
performance was obtained by setting 107" ag the valne of
;. This resnlts show that the use of the stochastic features
outperfornmed nonlinear spectral subtraction. The recogni-
tion ervor rednces between 13% and 14%. Particnlarly in
the cases that background music existed (Environment 5
and G). the performance improvement. was fairly large. The
effect of varying the value of /7 was consistent. over all kinds
of noige in the experiments. In additional experiments ns-
ing spectral over-estimation scheme [3] in the spectral sub-
traction in the process of stochastic feature extraction. no
improvement. was fonnd.

Next. the influence of changing the noise observation du-
ration on the recognition accuracy was investigated. Table
1 shows results when the noise observation duration was
varied from N = 10 frames (i.e. 100msec) to N = 200
frames {i.e. 2.000msec). It was found that the perfor-
mance was almost the same in the range from H00msec to
2. 000ms=ec. althongh the performance degraded when obser-
vation periods of environmental noige were very short (less
than 200msec). The performance degradation for short pe-
riods of noise observation can be considered to be cansed by
the small-sample-size effect in the process of the estimation
of speech pdf. To compensate this effect. the variances of
static parameters were henrisiically magnified by 1.5 in the
process of calenlating stochastic featnres with noise obser-
vation duration of 200msec. Table 5 shows that magnifying
variances improved the performance.

[Enviomment T T T2 73T 17 5 6]
Car A A 13 C D D
Speed(km/ly | 60 | 100 | 100 | 100 [ idle | 100
Music no | no no no i oyes | oyes
SKR(dD) 1325 | 3113 [161] 04

Table 1: Car noise used in the experinents

Isnvironment.
1 ] 2 3 [ 1 | D [ 6
NC [ 708 | 278 | 125 | 149 | 73.9 | 9.0
NSS | 86.6 | 7¥1.2 | 61.1 | 67.6 | 73.9 [ 52.9

Table 2: Recognition rates (1) by using clean HMMs with-
out any compensation method (NC). and with non-linear
spectral subtraction (NSS)



Environment
i} T [ 2 [ 3 ] 4] 5 [ 6
1077 [ 81.6 [ 58.2 | 432 ] 46.0 | 79.3 | 39.0
10721 86.6 | 69.8 [ 57.1 | 60.9 | 81.9 | 1.4
1077 ] 89.9 | 76.9 | 66.8 | 69.0 | 86.1 | 62.3
100 [ 000 |89 [691 | 718853 65.5
10-° 1 889 | 76.5 | 68.2 | 70.1 | 83.7 | 65.1
107 1 872 | 738 | 65.6 ] 68.1 | 81.2 | 63.9

Table 3: Recognition rates (7)) using different valne of 1
in the process of calculating stochastic features. and noise
ohsorvation duration of 2.000 msec

| time Knvironment
| (msec) T T 21 3 7 47 516
2.000 90.0 | 78.9 | 69.1 | T1.8 | 85.3 | 65.5
1.500 90.0 | 78.5 | 69.1 | T1.5 | 85.0 | 65.9
1.000 89.9 | 77.9 ] 70.1 | 722 1 81.8 | 66.0
500 89.9 | 7T7.1 | 69.2 | 71.0 | 83.6 | 65.2
200 88.9 | 719 | 67.1 | 69.2 | 80.2 | 63.]
- 100 83.9 | TL.7 | 63.2 | 66.0 | 74.0 | 57.7
Table 1: Recognition rates () using different observation
duration for noise. and i3 of 1071

Environment.
L | 2 | 3 [ 4 15 1 6
| 90.3 [ 76.6 I 68.2 [ 70.3 ] 82.1 [ 64.1 |

Table 5: Recognition rates (%) with magnifying (x1.5) the
valie of the variance of static parameter in the process of
calenlating stochastic features. nsing noise observation du-
ration of 200msec

5. CONCLUSIONS

[n this paper. we have examined a new framework for speech
recognition under noisy environment. where each feature
has a stochastic form and represenis the probability densily
function of the estimated speech component in the ohserved
noisy speech. The technique has been shown to produce
higher recognition rates under car noise environment than

_nonlinear spectral subtraction.

The stochastic featnre approach has a strong theoretical
relationship with the model combination approach. Both
approaches ealeulate the observation probability of input
noisy speech using the information on the noise distribution.
but it iz carried out in different ways. The comparison with
the model combination approach should be investigated.

Presently. only [)lP]lllllIl:l.)\ expemn( nts have been conducted.
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potential of the proposed fechnique.
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