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ABSTRACT

We have developed speech recognition middleware on a RISC
microprocessor which has robust processing functions
against environmental noise and speaker differences. The
speech recognition middleware enables  developers and users
to use a speech recognition process for many possible speech
applications, such as car navigation systems and handheld
PCs. In this paper, we report implementation issues of speech
recognition process in middleware of microprocessors and
propose robust noise handling functions using
ANC(Adaptive Noise Cancellation) and  noise adaptive
models. We also propose a new speaker adaptation algorithm,
in which the relationships among HMMs(Hidden Markov
Models) transfer vectors are provided as a set of pre-trained
interpolation coefficients. Experimental evaluations on 1000-
word vocabulary  speech recognition showed promising
results for both robust processing functions of the proposed
noise handling methods and the proposed speaker adaptation
method.

1. INTRODUCTION

Recently, quite a few efforts have been made to realize
sophisticated user interfaces which have speech processing
techniques. Especially, speech recognition technology has
made a great progress, and many commercially available
products have been announced in these days. However, many
technical problems are still existing to use speech recognition
systems in real applications. Robustness of speech
recognition in noisy environment and robustness for different
speakers' variations are main and key issues. Also, how to
implement speech recognition process is another important
issue to make speech recognition easy to use and to realize
speech recognition applications successfully.

First, regarding implementation issues, we have developed
speech recognition middleware on RISC microprocessors as
one of SuperH Speech Middleware functions. Second, to
realize robust speech recognition under environmental noise,
many approaches such as spectral subtraction (SS)
methods[1], Adaptive Noise Cancellation(ANC)[2], and
speech model adaptation techniques based on HMMs
decomposition have been proposed[3][4]. In this paper, we
have modified these techniques to realize robust speech
recognition middleware. Robust speech detection using ANC
method have been implemented and the speech model
adaptation by adding environmental noise have been used in
the middleware developed. Finally, speaker adaptation
mechanism has been implemented in the middleware by
optimizing process time and data/process memory sizes.

In this paper, we report detailed specifications of SuperH
Speech Middleware and implementation results of the

proposed robust processing functions for environmental noise
and speaker difference.  The calculation speed and the memory
size are limited in the middleware, but we have achieved real-
time recognition of 2000 words with high recognition rate.

2.  SuperH  SPEECH MIDDLEWARE

2.1   Middleware Specifications

Middleware is a kind of library set which connects hardware
and user applications. We have developed speech recognition
middleware on a RISC microprocessor. The middleware helps
to make an application which has the speech recognition
function. Table 1 shows the specification of our RISC

microprocessor Super  H¤ Risc Engine (SH-3) and the speech
recognition middleware. The operation speed and the memory
size are limited. We are using phonemic speech segments as
HMM units. To reduce calculation burden, semi-continuous
HMMs and tied mixtured 3-dimensional models have been
used. Moreover, we introduced several approximation search
techniques to save the calculation time. Thus, the middleware
achieved the performance of 93% recognition rate for 1000
word vocabulary with only 0.6 second response time.

Table 1: Specification of SuperH SR Middleware

Operation Speed
External Bus

Sampling
Frame Lengthl / Period

Processing Time
Response Time
Vocabulary Size

60 MHz
60 MHz / 32 bit
11.025 kHz / 16 bit
20 ms / 10ms
14 ms / frame
~ 0.6 sec
1000
256 kByte (phonetic model etc.)
500kByte (work) 

Speech Model

Memory Size

Phonemic Speech Units
/ Semi-continuous HMM

item specification

2.2  Middleware Architecture

Figure 1 shows an example of the middleware architecture
implemented on a SuperH board. The SH-3 has 60MHz cycle
process power. The fundamental middleware which has 1000-
word speech recognition ability needs 256kByte ROM(Read
Only Memory) as data/program memory and 560kByte
RAM(Random Access Memory) as work memory. The input
speech is digitized by an 11.025kHz-sampling A/D converter,
and processed by the middleware via. interface bus. Finally,



the recognized results are shown to display terminals through
a RS232C Interface.
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Figure 1: Example of System Architecture

3.   NOISE HANDLING METHOD

3.1  ANC(Adaptive Noise Cancellation)

The ANC is used for a noise reduction technique which makes
speech interval detection easy and precise. Figure 2 shows a
block-diagram of ANC for the speech interval detection. The
ANC needs normally two microphones, one for speech data
and the other for noise data. In the middleware developed, a
300-tap adaptive digital filter has been used to reduce speech
input data which includes noise data.
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Figure 2: Block-diagram of ANC for Speech Interval
Detection

3.2   Noise Adapted Speech HMMs

Many noise adaptation techniques based on decomposition
and composition of speech and noise HMMs have been
proposed and showed promising results[3][4]. We have
modified these techniques and combined with the ANC
speech detection technique to realize robust and concise
speech recognition middleware.

The noise adapted HMMs are extracted by the processing flow
shown in Figure 3[4]. Noise HMMs are calculated by the
environmental noise and added to the stored HMMs which
has been created using clean speech data. To add noise HMMs
to the clean HMMs, two transform processes of cosine
transform and exponential transform are used. In the

convolution process, the following calculation is done to
extract noise adapted HMMs in the linear spectrum domain.

R = S + k(SNR)∗ N (1)

where, S, N, and R show clean HMMs, noise HMMs and
adapted HMMs in linear spectrum domain, respectively. k is
multiple parameter determined by Signal-Noise-Ratio(SNR) of
environments. The combined HMMs are extracted by Log
Transform and Inverse Cosine Transform from R of the
equation(1).
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Figure 3: Noise Adaptation Flow

Figure 4 shows experimental evaluation results of the noise
adaptation HMMs. We used two types noise, namely car
running noise and car air conditioner noise as noise
environments.
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Figure 4: Experimental Evaluation Results



A speech recognition task is Japanese 1000 railway station
names. Four types of SNR conditions were evaluated using
1000 station names uttered by 28 speakers. The air
conditioner noise cases showed lower recognition results
than car running noise cases. In car running noise cases,
almost half of errors have been improved using the proposed
combination method of ANC speech interval detection and
noise adapted HMMs.

4.  SPEAKER ADAPTATION
Speaker adaptation is one of the adaptation schemes, where
the speaker independent(SI) HMMs are modified to the
speaker adapted(SA) HMMs using small amount of adaptation
speech data. The SI HMMs include many models
corresponding to many types of the phonetic units. However,
the adaptation data include only few models, so the problem is
how to adapt those models that do not appear in the
adaptation data. Moreover, even the models that appear in the
adaptation data are not adapted correctly, because there are
not enough data for each model. For these problems, many
interpolation and smoothing techniques have been
proposed[5][6].  All of these techniques are based on the
assumption that the transfer vector field should be smooth.
This assumption helps the good estimation of transfer vectors,
but it brings the limit of the precise estimation. We propose a
new speaker adaptation algorithm, which does not assume the
smoothness of the transfer vector field. We prepare many
reference speaker Dependent(SD) HMMs, and calculate
correlation between each other. We use this information,
instead of the smoothness assumption, to estimate unknown
and uncertain transfer vectors. Similar approach was applied
to the word recognition system based on dynamic time
warping (DTW) by Furui [7].

4.1 Interpolation with Pre-trained
Coefficients

Figure 5 shows a block-diagram of the proposed speaker
adaptation algorithm named Interpolation with Pre-trained
Coefficients(IPTC)[8]. The adaptation speech input comes
with the corresponding adaptation word. The speech input is
transformed to the feature vectors by LPC analysis, and then
matched with the adaptation word. In the matching process,
the time series of feature vectors are segmented into phonetic
units using SI HMMs and Viterbi algorithm.
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Figure 5: Block-diagram of Speaker Adaptation Algorithm.

After matching, each HMM model is trained using MAP
estimation. To reduce the calculation time and to avoid the
over-learning, only the mean vectors of the Gaussian
probability density are trained, and the covariance of SI
HMMs are used in SA HMMs. In the semi-continuous HMM
of our system, each HMM has two states and each state has
three Gaussian mixtures, and all of those mixtures are tied to
make HMM codebooks. Therefore, the mean vectors of those
HMM codebooks are adapted. A transfer vector is defined as a
difference between mean vectors before and after training.

V pi= µ pi– µ pi (2)

where Vpi is the i-th element of the transfer vector of the p-th
HMM codebook.  µpi and  µpi correspond to the mean vectors
before and after training. Parallel to this process, correlation
information among transfer vectors is extracted from reference
SD HMMs. Correlation information is represented as linear
combination coefficients for interpolation and re-estimation.

After matching and training procedures, HMM codebooks are
divided into two groups; HMM codebooks that appear in the
adaptation data (trained codebooks) and HMM codebooks
that do not appear in the adaptation data (untrained
codebooks). For untrained codebooks, interpolation is carried
out using the following equation.

V pi= C pq
( I)VqiΣ

q ∈ N(I)( p)

(3)

where N(I)(p) is the set of trained neighbors of the p-th HMM

codebook, and C(I)pq is the interpolation coefficient of q-th
HMM codebook. To avoid errors originated in data sparsity, a
re-estimation procedure for all HMM codebooks follows the
interpolation procedure.

V pi
' = (C pq

(R)Vqi+ V pi) / 2Σ
q ∈ N( R)( p)

(4)

where Vpi is the i-th element of the trained or interpolated
transfer vector, and V'pi is the i-th element of the re-estimated

transfer vector. The neighbor set N(R)(p) includes both

trained and interpolated HMM codebooks, and C(R)pq is the
re-estimation coefficient of q-th HMM codebook. Equation (4)

becomes the same as that of the VFS in [5] if the values C(R)pq
are calculated only from the distances between HMM
codebooks. For simplicity, we add the original transfer vector
and the estimated transfer vector with the same ratio, but the
ratio can be changed if necessary.

In our algorithm, the coefficients C(I)pq and C(R)pq are
calculated beforehand using transfer vectors of reference SD
HMMs. That is the reason why we named the proposed
algorithm "Interpolation with Pre-trained Coefficients
(IPTC)." We prepare 36 reference SD HMMs from 36 speakers,
which are made using 216 phonetically balanced words.

4.2   Experimental Evaluation Results

To evaluate the performance of the adaptation, the proposed
algorithm IPTC was compared with MAP-VFS on the
recognition task of 1000 words. The vocabulary consists of
Japanese railway station names. Each word is transformed to



the series of HMM states. The number of HMM states varies
from 18 (3 phonemes) to 86 (20 phonemes), and the average is
39.54 (8.38 phonemes). Figure 6 shows the average
recognition rate (circles) and the recognition rate for the
speaker whose recognition rate for the SI HMMs is the worst
in the six speakers (squares). In the experiment, 300 of 1000
utterances were picked up for each of six speakers. 50 of them
are used as the adaptation utterances, and 250 are used for test.
The average duration length of those 50 words is 42.96 states
(9.24 phonemes). In one, two, and five word adaptation, 50
adaptation utterances are divided into 50, 25, and 10 subsets
respectively. In 10, 20, and 30 word adaptation, 50 adaptation
utterances are divided into 10 overlapping subsets, such as
#1~#10, #6~#15, #11~#20, etc. (# denotes the word No.) The
recognition rate for a speaker is calculated by averaging over
all of  those subsets, where the same testing data are used. The
recognition rate for all speakers is calculated by averaging
over six speakers. As shown in Figure 6, the recognition rate
of IPTC is lower than MAP-VFS when adapted by one or two
words. However, IPTC brings higher recognition rate when
adapted by more than five words. Since interpolation and re-
estimation procedures tend to depend on fewer neighboring
HMMs in IPTC than in MAP-VFS, wrong adaptation by the
small number of adaptation words may propagate in the
interpolation and re-estimation processes. The adaptation by
IPTC reduces 28.5% of recognition errors using 10 adaptation
words, and 52.7% using 50 adaptation words, while MAP-
VFS reduces only 22.9% and 38.4% respectively.
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Figure 6: Adaptation Evaluation Results. Three lines
on top represent average of six speakers, and three lines
on bottom represent the speaker whose recognition
rate is the worst in the six. IPTC results are plotted by
black and MAP-VFS results are plotted by white.

The adaptation performance is remarkable for the worst
speaker, where 32.6% are reduced using 10 words and 58.6%
are reduced using 50 words. (23.1% and 43.1% by MAP-VFS)

5.   SUMMARY

This paper described a new implementation of speech
recognition as middleware on RISC microprocessors. To
realize robust processing functions against environmental
noise and speaker differences, we have developed robust noise
handling techniques using ANC(Adaptive Noise
Cancellation) and  noise adaptive models. We also have
proposed a new speaker adaptation algorithm named
Interpolation with Pre-trained Coefficients(IPTC). The
algorithm uses interpolation and re-estimation coefficients
which are calculated from the transfer vectors of the reference
SD HMMs. The proposed robust processing techniques have
been implemented as a part of the speech recognition
middleware on RISC microprocessors. Experimental results
have shown that the developed middleware compares
favorably with other speech recognition systems.
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