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ABSTRACT 

The generation of a pleasant pitch contour is an important issue 

for the naturalness of each TTS system. Till now the results are far 

from being satisfactory. In this paper we present a speakerand task 

specific approach realized by a neural network. Personal and task 

specific characteristics are maintained and the demand of gcneral- 

ization decreases. So the results in application can signilicantly be 

improved. 

I!sing an optimized network structure global and well localized 

paltems can be covered and trained simultaneously within one net- 

work. Correlation analysis of the data base versus the sensitivity of 

the trained network validates the importance of distinctive param- 

ctcrs in training. Based on this comparison we give a discussion 

of the generalization properties of the nn trained speaker and task 

dependency. Finally a variation of the context range helps to find 

an optimized tuning of the input parameter set. 

1. INTRODUCTION 

State of the art TTS systems mainly are highly intelligible but un- 

pleasant to listen to. Unnatural or monotone prosody makes the 

synthetic speech sounding dull or robotic. Attempts to incorporate 

more charm in synthetic voices are still at the beginning. 

Rule based systems for fundamental frequency contour generation 

suffer from the lack of a precise and generally agreed on set of 

rules for to product a pleasant and human sounding pitch contour. 

Data driven approaches [7j[9] successfully make use of the pitch 

contours of human voices without explicit formulation of the prop- 

cities that make a voice sound pleasant. The trainability of those 

systems makes them open for construction of multilingual systems 

without the supervision of an human expert. 

In section 2 we develop the idea of using the implicitly performed 

adaption to mimic the prosodic intonation characteristic of one 

voice in a special task. Section 4 shows details of the parame- 

ters that were used as input for neural network (nn). In section 

5 we present the architecture for our nn. Section 6 analyses cor- 

relations in the training data versus the sensitivities of the trained 

network and gives a lirst interpretation of what the network leamcd 

in training. In section 7 we report experiments on the variation of 

the context range used as input parameters. 

The presented algorithms for pitch contour generation arc part 

of the new multilingual Siemens TTS-system “Papageno”. The 

prosodic parameters phone, duration and energy are generated from 

a statistical data base 121. 

2. SPEAKER AND TASK DEPENDENT PROSODY 

Concatcnative speech synthesis uses articulatory tracks taken from 

utterances of one speaker. Consistently we use a data base of one 

speaker to train a pitch contour generating network. This network 

then mimics the prosodic characteristic of this selected voice. The 

two main advantages of this approach are: 

l prosodic characteristics of one voice make the resulting speech 

sounding much more natural and personal. The impression of bc- 

ing talked to by an androgyn standard voice is rcduccd. 

l Following a single voice is much less complicated training task 

than the additional demand to gcncralize over the various speakers 

in a mixed data base. 

Following the idea of specialization we further limit the kind 01 

text to be dealt with. The voice very much depends on concrete 

situations and moods. A telephone chat with a friend very much 

differs from a formal speech in public in its intonation and should 

be treated in a different way. 

The task addressed in this paper is reading aloud newspapers. WC 

use a data base recorded with an educated speaker reading approx- 

imately 3 hours of text from “Frankfurter Allgcmeine Zcitunp” 

containing 1000 declaration sentences of complex structure. We 

used 70% of the syllables contained for training, 15% for validn- 

tion, 15% for testing. The data base was automaticaly segmented 

using a overadapted HMM 121, A laryngograph was used to accu- 

ratcly detect the moments of glottal excitation. 

3. ho- PARAMETRISATION 

Database and synthetic pitch contours are paramctrised using a 

maximum based piecewise linear approximation [4]. Employed 

parameters are amplitude delay, left and right slope of an approx- 

imating triangle (see figure I). 



4. INPUT MODELING 

Input parameter and pitch contour paramctrisation are organized 

on syllable level. The prosodic marker are generated by the sym- 

bolic part of the VERBMOBIL ITS-system [I 1. 

Input parameters are composed of: 

I. Phonetic Infnrmation 
The phonetic information are the phones a syllable consists 

of. To reduce the number of input variables, we classified 

the consonants in the four groups liquids, fricatives, orals 

and nasals. 

2. Prosodic Information 

l Prosody Marks 
This information contains a real valued number de- 

noting the stress of the syllable and flags indicating 

linguistic features like beginning or end of a sentence 

[g] (see figure 7 for details). 

l Durations and Starting Points 
Additional information is provided relative to the syn- 

thesis time axis. The starting point of the syllable, of 

its vowel and the overall length of the sentence are 

real valued input parameters. 

5. DESIGN OF THE NEURAL NETWORK 

5.1. Network Architecture 

The Network Architecture is shown in figure 2. Additional to 

a standard feed-forward multilaycr percpetron we use a squaring 

layer connected to the real valued inputs by an identity matrix (dot- 

ted arrow in figure 2). The other matrixes in figure 2 denote a full 

connection of the captured network nodes or layers. The hidden 

layer consists of 40 nodes with an activation function tanh(x). 

Fii’gurl> 2: Neural network,for Fo-Generation, a ,ficll connected 
,f~~ed+~rword network with additional squured input vuriahlcs. 

5.2. Linear and Squared Input Parameters 

Using linear and squared input parameters easily combines two 

different classification properties. The direct use of the input pa- 

rameters results in a linear separation of the feature space. The 

squared input parameters perform a wcightcd distance classifica- 

tion by radial basis functions. The first one is capturing global, the 

second one well localized patterns. 

See the activation functions of the hidden layer for both linear and 

squared inputs in figure 3. Figure 4 shows examples for possible 

separations of a feature space by both types of classifier. 

;‘:: 

Figure 3: Comparison between talll~(z) and t.anh( -J?). The, 
Function tanh (x) with squared parameter becomes rudiully sp- 
metric. 

Figure 4: Activation of hidden neurans with two input variuhles. 
The icji graph shows a linear separation of the j&urcJ spucc hi 
sigmoid ,functions. The right one shows local activation, L&h 
neuron represents one hill. 

5.3. Output Encoding 

In tirst experiments the net showed poor results in learning the 

output parameters left and right slope. To avoid shortcomings 01 

the squared error function, training these parameters arc encoded 

as a fuzzy set of neurons [S]. 

Each parameter is represented by the combination of ten neurons 

denoting equidistant sections of the interval [O; :I. For defuzziti- 

caton the Center-of-Area-Method showed good results in applica- 

tion. 

During training the dcsircd target value of each neuron is defined 

as a Gaussian centered at the neuron corresponding to the exact 

parameter taken from the data base (see ligurc 5). 

5.4. Training Strategies 

Training starts with randomly initialized weights. In the first train- 

ing stage we use a gradient algorithm. Vario Eta [6] is based on 

optimization of the weights by a least mean square criterion of the 



Training Network Output 

Figure 5: Output encodin~ji,r k/i and right slope. For truining we 
used the Gaussianfunction. The network output was defuz.$catrd 
with Center-&Area-Method. 

error function. The magnitude of weight incrcmentation in each 

iteration is varied accordingly to the number of components of the 

error vector that are reduced by this iteration step. Randomly sc- 

lcoting a subset of training patterns in each iteration step helps to 

avoid early convergence to local minima. 

After reaching an minimum error on the generalization set we 

change the training algorithm for further refinement in a second 

stage (figure 6). Now all training patterns are considered simulta- 

neously by an Low-Memory-BFGS method 161. A modified New- 

ton algorithm is used to minimize the error function described by 

a second order Taylor approximation. 
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Figure 6: The course of error while training We changed training 
algorithm ut epmche 4J,fi>r,fidrther r~~finetnent. At the minimum of 
,generalization error we,finished the training. 

6. SENSITIVITY ANALYSIS 

6.1. Analysis Tools 

Accordingly to the highly complex combination of input param- 

eters in a nn, analysis oi’ a trained network allows only tcnden- 

tious interpretation. In this section we discuss the correlation ot 

the training patterns versus the sensitivity of the output nodes dc- 

fined by their partial derivation 

4;,(x) = g+(J). 
J 

To get a stable and signilicant result, the sum 01‘ 4ij(~) for all 

patterns of the gcncralization set was computed as follows: 

Sij = C 14ij(X)l 
.P 

As an example we discuss the outpul parameter “amplitude”. Pa- 

rameter describing the synthesis time axis (SW section 4) together 

with the linguistic Hags, do contain redundance. The flag “end of 

the sentence” e.g. does not provide other information than a value 

0.95 for the starting time of the syllabic relative IO the sentcncc 

time axis. 

12 3 4 5 6 7 8 9 10 11 12 

Figure 7: Sensitivity Analysis of Amplitude. real number inputs: 
I duration of sentence, 2 start oj’syllahle, 3 duration of s~llablt~, 4 
sturt of vowel, 5 duration of vowel, 6 stress level, Jags: 7 hexin- 
ning ofsentence, 8 end of sentence, 9 beginning of extended group, 
IO hexinning ending group, I I medium break, I2 short break. 

I 2 3 4 5 6 1 x 9 IO 1 I I2 

Figure 8: Correlution between Input and Amplitude. For expla- 
nation of input variables see Figure 7. 

6.2. Discussion 

The sensitivities listed in Hgurc 7 are dominated by the intluence 

of the relative position of the syllable in the sentence. The fags 



begin and end of sentence (parameter 7 and 8 in figures 7 and 8) 

arc redundant with it. It is interesting to see that the sensitivity IO 

parameter 7 is much higher than to parameter 8, having compara- 

ble correlation in the data base (ligurc 8) and both of them being 

redundant with the paramctcr 2. 

8. RESULTS 

Parameter I captures the overall length of the sentence and so the 

complexity of its structure. Compared to the input-output corrcla- 

tion the sensitivity of the parameters 9 to I2 is significantly high. 

These flags denote breaks and the beginning of new phrases. They 

are not redundant with the overall position of the syllable. 

The artificially generated pitch contours were tested within PSOLA 

resynthesis. The presented nn comes with very good results rcad- 

ing aloud newspaper texts. The intonation characteristic of our 

data base speaker and most of its charm is preserved. For short 

sentences the result is close to natural speech. Sentences that con- 

sist of more than three phrase tend to sound a little boring or mono- 

tone. This listening impression encourages the assumption of the 

net lcaming one pattern which is than modified and repeated. 

The fact that the data base contains only one type of sentences and The memory requirement of the presented net is less than IXk 

the above mentioned structures in correlation and sensitivity en- bytes. The automatic segmentation of the training data hasc al- 

courage the following assumption: “The training results in leam- lows an fast and completely automatic integration of new speakers 

ing a general macro structure on sentence level. This macro struc- and tasks. Neither making use of an human expert nor assuming 

ture is modulated by local influences like phrase boundaries and properties of underlying speech or language makes this method 

stress positions.” suitahle for true multilinguality. 

7. VARIATION OF CONTEXT RANGE 

As the pitch contour of natural sentences consist of complex global 

patterns one would like to take into account a broad context of 

surrounding syllables. In practical application there are two main 

constraints: 

Our scope is limited to sentence level. Widely extended 

context. emphasizes undesirable boundary effects at the be- 

ginning and the end of a sentence. 

According to the limited amount of training patterns a more 

and more complex network lacks of generalization propcr- 

lies. 

Table I reports a set of experiments varying the context range for 

both prosodic and phonetic input parameters. Even if the listed 

generalization error is far from human speech perception it clearly 

indicates tendencies resulting in audible quality of synthetic speech. 

The reported results arc behaving in a typical way. Phonetic infor- 

mation mainly is important for the syllable dealt with. Broadening 

the context of prosodic information improves results up to a ccr- 

tain level. Further extension results in a network with too many 

degrees of freedom. 

For this application we found a clear optimum for a prosodic oon- 

text of I syllahlc (o*o). Using an extended training data base 

should enable the training of a network considering a wider prosodic 

conlext. 

Prosodtc 
Phonemic Information 

- * o*o 00*00 

- - 1 0.13X8 1 0.1328 1 0.1302 

* 0.1 144 0.1 136 0.1 I38 0.1 14X 

o*o 0.1 IO9 0.1097 0.1 IO6 0.1 I I9 

oo*oo 0.1 IO7 0.1 I02 0.1 I05 0.1138 

In application the change between a small set of task dependent 

networks offers a computational eflicient possibility for high quul- 

itativc speech synthesis. The variation of speaking styles can help 

lo reduce the somewhat boating attitude TX-systems are still sup- 

posed to have. 
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