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ABSTRACT

The generation of a pleasant pitch contour is an important issue
for the naturalness of cach TTS system. Till now the results are far
from being satisfactory. In this paper we present a speaker and task
specific approach realized by a neural network. Personal and task
specific characteristics are maintained and the demand of general-
ization decreases. So the results in application can significantly be
improved.

Using an optimized network structure global and well localized
patterns can be covered and trained simuitaneously within one net-
work. Correlation analysis of the data base versus the sensitivity of
the trained network validates the importance of distinctive param-
eters in training. Based on this comparison we give a discussion
of the generalization properties of the nn trained spcaker and task
dependency. Finally a variation of the context range helps to find
an optimized tuning of the input parameter set.

1. INTRODUCTION

State of the art TTS systems mainly are highly intelligible but un-
pleasant to listen to. Unnatural or monotone prosody makes the
synthetic speech sounding dull or robotic. Attempts to incorporate
more charm in synthetic voices are still at the beginning.

Rule based systems for fundamental frequency contour generation
suffer from the lack of a precise and gencrally agreed on set of
rules for to producc a pleasant and human sounding pitch contour.
Data driven approaches [7][9] successfully make use of the pitch
contours of human voices without explicit formulation of the prop-
crties that make a voice sound pleasant. The trainability of those
systems makes them open for construction of multilingual systcms
without the supervision of an human expert.

In section 2 we develop the idea of using the implicitly performed
adaption to mimic the prosodic intonation characteristic of one
voice in a special task. Section 4 shows details of the parame-
ters that were used as input for neural network (nn). In section
5 we present the architecture for our nn. Section 6 analyses cor-
relations in the training data versus the sensitivities of the trained
network and gives a first interpretation of what the network learned
in training. In section 7 we report cxperiments on the variation of
the context range used as input parameters.

The presented algorithms for pitch contour generation are part
of the new multilingual Siemens TTS-system "Papageno”. The
prosodic parameters phone, duration and energy are generated from
a statistical data base |2].

2. SPEAKER AND TASK DEPENDENT PROSODY

Concatenative specch synthesis uses articulatory tracks taken from
utterances of one spcaker. Consistently we use a data basc of one
speaker to train a pitch contour generating network. This network
then mimics the prosodic characteristic of this selected voice. The
two main advantages of this approach are:

e prosodic characteristics of one voice make the resulting speech
sounding much more natural and personal. The impression of be-
ing talked to by an androgyn standard voice is reduced.

¢ Following a singlc voice is much less complicated training task
than the additional demand to gencralize over the various speakers
in a mixed data base.

Following the idea of specialization we further limit the kind of
text to be dealt with. The voice very much depends on concrete
situations and moods. A telephone chat with a friend very much
differs from a formal speech in public in its intonation and should
be treated in a differcnt way.

The task addressed in this paper is reading aloud newspapers. We
use a data base recorded with an educated speaker reading approx-
imately 3 hours of text from "Frankfurter Allgemeine Zeitung”
containing 1000 declaration sentences of complex structure. We
used 70% of the syllables contained for training, 15% for valida-
tion, 15% for testing. The data base was automaticaly segmented
using a overadapted HMM [2]. A laryngograph was used to accu-
ratcly detect the moments of glottal excitation.

3. Fy- PARAMETRISATION

Database and synthetic pitch contours are parametrised using a
maximum based piecewise linear approximation [4]. Employed
parameters are amplitude, delay, left and right slope of an approx-
imating triangle (scc figure 1).

left slope right slope

-
—

amplitude

|<——————>" ~— |

l syllable b e

Fundamental Frequency

Figure 1: Maximum based description of fundamental frequency



4. INPUT MODELING

Input parameter and pitch contour parametrisation are organized
on syllable level. The prosodic marker are generated by the sym-
bolic part of the VERBMOBIL TTS-system [1].

Input parameters are composed of:

1. Phonetic Information
The phonetic information are the phones a syllable consists
of. To reduce the number of input variables, we classified
the consonants in the four groups liquids, fricatives, orals
and nasals.

2. Prosodic Information

o Prosody Marks
This information contains a real valued number de-
noting the stress of the syllable and flags indicating
linguistic features like beginning or end of a sentence
[8] (see figure 7 for details).

¢ Durations and Starting Points
Additional information is provided relative to the syn-
thesis time axis. The starting point of the syllable, of
its vowel and the overall length of the sentence are
rcal valued input parameters.

5. DESIGN OF THE NEURAL NETWORK

5.1. Network Architecture

The Network Architecture is shown in figure 2. Additional to
a standard feed-forward multilayer percpetron we use a squaring
layer connected to the real valued inputs by an identity matrix (dot-
ted arrow in figure 2). The other matrixes in figure 2 denote a full
connection of the captured network nodes or layers. The hidden
layer consists of 40 nodes with an activation function tanh(x).
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Figure 2: Neural network for I'y-Generation, a full connected
Sfeed-forward network with additional squared input variables.

5.2. Linear and Squared Input Parameters

Using linear and squared input parameters easily combines two
difterent classification properties. The direct use of the input pa-
rameters results in a linear separation of the feature space. The
squared input parameters perform a weighted distance classifica-
tion by radial basis functions. The first one is capturing global, the
second one well localized patterns.

Sce the activation functions of the hidden layer for both linear and
squared inputs in figure 3. Figurc 4 shows examples for possible
separations of a feature space by both types of classifier.

Figure 3: Comparison between tanh(x) and tanh(—a?). The
Function tanh(x) with squared parameter becomes radially sym-
metric.

Figure 4: Activation of hidden neurons with two input variables.
The left graph shows a linear separation of the feature space by
sigmoid functions. The right one shows local activation. Each
neuron represents one hill.

5.3. Output Encoding

In first experiments the nct showed poor results in learning the
output parameters left and right slope. To avoid shortcomings of
the squared error function, training these parameters arc encoded
as a fuzzy sct of neurons [5].

Each parameter is represented by the combination of ten neurons
denoting equidistant sections of the interval [0; %]. For defuzzifi-
caton the Center-of-Area-Mcthod showed good results in applica-
tion.

During training the desired target value of each ncuron is defined
as a Gaussian centcred at the ncuron corresponding to the exact
parameter taken from the data base (see figure 5).

5.4. Training Strategies

Training starts with randomly initialized weights. In the first train-
ing stage we use a gradient algorithm. Vario Eta [6] is based on
optimization of the weights by a least mcan square criterion of the
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Figure 5: Output encoding for left and right slope. For training we
used the Gaussian function. The network output was defuzzificated
with Center-of-Area-Method.

error function. The magnitude of weight incrementation in each
iteration is varied accordingly to the number of components of the
error vector that are reduced by this iteration step. Randomly se-
lecting a subset of training patterns in each iteration step helps to
avoid early convergence to local minima.

After reaching an minimum error on the generalization set we
change the training algorithm for further refinement in a second
stage (figure 6). Now all training pattens are considered simulta-
neously by an Low-Memory-BFGS method [6]. A modified New-
ton algorithm is uscd to minimize the error function described by
a second order Taylor approximation.
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Figure 6: The course of error while training. We changed training
algorithm at epoche 43 for further refinement. At the minimum of
generalization error we finished the training.

6. SENSITIVITY ANALYSIS

6.1. Analysis Tools

Accordingly to the highly complex combination of input param-
eters in a nn, analysis of a trained network allows only tenden-
tious interpretation. In this scction we discuss the correlation of
the training patterns versus the sensitivity of the output nodes de-
fined by their partial derivation

Ajj(z) = 3
J

().

To get a stable and significant result, the sum of A;; () for all
patterns of the gencralization set was computed as follows:

Sij =y |Aij(x)]

As an example we discuss the output parameter "amplitude”. Pa-
rameter describing the synthesis time axis (see scction 4) together
with the linguistic flags, do contain redundance. The flag “end of
the sentence” e.g. does not provide other information than a value
0.95 for the starting time of the syllable relative to the sentence
time axis.
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Figure 7: Sensitivity Analysis of Amplitude. real number inputs:
I duration of sentence, 2 start of syllable, 3 duration of svllable, 4
start of vowel, 5 duration of vowel, 6 stress level, flags: 7 begin-
ning of sentence, 8 end of sentence, 9 beginning of extended group,
10 beginning ending group, 11 medium break, 12 short break.
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Figure 8: Correlation between Input and Amplitude. For expla-
nation of input variables see Figure 7.
6.2. Discussion

The sensitivities listed in figure 7 are dominated by the influence
of the relative position of the syllable in the sentence. The flags



begin and end of sentence (parameter 7 and 8 in figures 7 and 8)
are redundant with it. It is interesting to see that the sensitivity to
parameter 7 is much higher than to parameter 8, having compara-
ble correlation in the data base (figurc 8) and both of them being

redundant with the parameter 2.

Parameter | captures the overall length of the sentence and so the
complexity of its structure. Compared to the input-output correla-
tion the sensitivity of the parameters 9 to 12 is significantly high.
These flacs denote breaks and the beginnineg of new nhr'\cnc Tht—ly
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are not redundant with the overall position of the sylhble.

the above mentioned structures in correldtlon and sensmwty en-
courage the following assumption: "The training results in learn-
ing a general macro structure on sentence level. This macro struc-
ture is modulatt,d by local influences like phrase boundarics and

7. VARIATION OF CONTEXT RANGE

As the pitch contour of natural sentences consist of complex global
patterns one would like to take into account a broad context of
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e Our scope is limited to sentence level. Widely extended
context, emphasizes undesirable boundary ctfects at the be-
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o According to the limited amount of training patterns a more
and more complex network lacks of generalization proper-
ties.

Table 1 reports a set of experiments varying the context range for
both prosodic and phonetic input parameters. Even if the listed
generalization error is far from human speech perception it clearly
indicates tendencies resulting in audible quality of synthetic speech.

The reported results are behaving in a typical wa etic info
mation mainly is important for the syllable dealt with. Broadening
the context of prosodic information improves results up to a cer-
tain level. Further extension results in a network with too many

degrecs of freedom.

1y, Phonetic infor-

For this application we found a clear optimum for a prosodic con-
text of | syllable (0*0). Using an extended training data base
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should enable the training of a network considering a wider prosodic
context.
rosodic . - .
P h . Phonemic Information
Information i i
— * 0*0 00%00
— — 0.1388 | 0.1328 | 0.1302
* 0.1144 | 0.1136 | 0.1138 | 0.1148
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Table 1: Generalization error of well trained networks dependent
on the context width, * one syllable, o*o syllable with a context
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8. RESULTS

The artificially generated pilch contours were tested within PSOLA
resynthesis, The presented nn comes with very good re
ing aloud newspaper texts. The intonation Lhardctcrlstlc of our
data base speaker and most of its charm is preserved. For short
sentences the result is close to natural specch. Sentences that con-
sist of more than three phrasc tend to sound a little boring or mono-
tone. This listening impression encourages the assumption ot the
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net learning one pattern which is than modlﬁcd and repeated.
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bytes. The automatic segmcntatmn 01 the tr"lmmg, dala basc al-
lows an fast and completely automatic integration of new speakers
and tasks. Neither making use of an human expert nor assuming
properties of underlying specch or language makes this method

suitable for true multilinouality.
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In application the change between a small set of task depcndenl
networks offers a computational efficient possibility for high qual-
ilative speech synthesis. The variation of speaking styles can help
to reduce the somewhat boaring attitude TTS-systems are still sup-

poscd to have.
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