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ABSTRACT 

Joint source/channel coders obtained using MAP 
decoders tend to fail at low probability of error. In 
this paper we propose a modification of the standard 
approach which provides protection at low error rates 
as well. 

1. INTRODUCTION 

Implicit in the information transmission theorem [l], 
which provides justification for the separate design of 
the source coder and the channel coder, is the assump- 
tion that both the source encoder/decoder pair and the 
channel encoder/decoder pair are operating in an opti- 

mal fashion. In practical applications, due to the viola- 
tion of the assumptions made in [I] and limits on com- 
plexity, this separation may not be possible [2], and the 

source encoder’s output contains redundancy. Massey 

[3] showed that f or distortionless transmission of the 

source under the constraint of linear source and chan- 
nel coders, a significant reduction in complexity with 
equivalent performance can be achieved using a joint 

source/channel coder. 
Research in the field of joint source/channel coding can 

be distinguished in three classes. The first class of the 

coders can be designated as joint source/channel coders 
because the source and channel coding operations are 
truly integrated. Another class of coders can be desig- 
nated as concatenated source/channel coders. Coders 
that maximize the overall system performance by al- 
locating the fixed bit rate between the known source 

coders and channel coders are placed in this class. The 
work of Modestino, Daut, and Vickers [4], and Com- 
stock and Gibson [5] can be included in this second 

class. 

The third class of coders can be denoted as constrained 
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joint source/channel coders because the source coder 

and/or decoder are modified in order to consider the 
presence of a noisy channel. The work of Chang and 
Donaldson [6], R einenger and Gibson [7], Sayood and 
Borkenhagen[8], Phamdo and Farvardin [ll], and, the 
work of Sayood, Liu, and Gibson [9] belong to this class. 
The current work falls in the latter class. It is an exten- 

sion of the system proposed in [8]. We therefore briefly 
review the approach proposed in [8] in the next section. 
We then describe the proposed encoder structure, and 

the corresponding decoder structure in Section 3, and 
Section 4 respectively. Finally the simulation results 
followed by a conclusion section is presented. 

2. PREVIOUS WORK 

In [8], Sayood and Borkenhagen made use of the resid- 

ual redundancy in the source coder output for error 

protection. To show the validity of this approach they 
applied it to image coding using DPCM. Assuming that 
the source is an autoregressive process of order M gen- 
erated according to (l), and the predictor is a linear 

predictor of order N, we can show that under even 
slightly nonideal conditions the transmitted sequence 

is correlated.Using this correlation, the decoder struc- 
ture in [8] maximized the a posteriori probability 

L(j,m,n) = P[Bi = CYj, JOi- = Cr,,ii = Cr,]. (1) 

where, oi are elements of the channel input alphabet, 
Bi is the transmitted symbol at time i, and tii is the 
corrupted received value at time i. The previous sym- 
bol is also included in the quantity to be maximized 
in order to make use of the redundancy in the received 

sequence. The decoder structure was patterned after 

the Viterbi Decoder. Phamdo and Farvardin [ll] used 

the same idea for VQ. Due to [S] and [ll] maximizing 
(1) is equivalent to maximizing 

P[Oi = Ctj, It+-, = CXm]P[&i = On, l8i = CXj] (2) 



The expression for L is in terms of the transition prob- 
abilities of the source encoder and the channel. In [ll] 
it was shown that for a BSC, the decoder that imple- 

ments (2) is useless for channel probability of errors 

satisfying 

(1 - PI” 
p 5 PI = (N - 1)Zp2+(1 -p)2 (3) 

where, N is the alphabet size of the discrete Markov 
source, p is the probability of returning to the same 
state, P is the channel probability of error, and PI 
is the “critical bit error rate”. In other words, they 
proved that the optimum sequence detection rule is 
taking the received symbols as the transmitted sym- 
bols, i.e., performing no decoding at all, if and only if 

the BSC’s probability of error satisfies (3). 

3. ENCODER STRUCTURE 

The coders in [8] and [ll] do not work well for chan- 
nels with low probability of error. The distance be- 
tween the correct and incorrect sequence is not suf- 
ficient for the decoder to discriminate between them. 
We can increase the distance by disallowing some of the 
sequences. In [9], this was done using a nonbinary con- 
volutional code. However, this requires considerable 
overhead. If we could impose an explicit constraint on 

the source coder output without using a separate chan- 
nel encoder, i.e., without using any additional overhead 
in order to have the constraint, we would be able to 

perform well for channels with low probability of er- 

ror as well. To achieve this, the constraint has to be 

in some measure already inherent in the structure of 
the source coder output. We considered the DPCM 
system in particular. Due to residual redundancy, the 
DPCM output still has a low pass spectrum, and does 
not change “too much” in small blocks. Therefore, we 
considered the DPCM output in blocks of length M 

(M,even),~1,22,..., zM, and modified this block such 

that CEyzzi = CE<2xzi-r. However, once the DPCM 
output is obtained, if one changes some of the symbols 

in this sequence, this would result in great amounts 
of distortion due to the propagation of error, which is 

an intrinsic property of DPCM. In order to overcome 

this problem we implemented DPCM as a tree encoder 
[12]. For a block length M, a search depth of M/2 in 

the tree encoder guarantees that a block satisfying the 
constraint can always be found. The proposed “con- 

strained tree encoder” finds the branch of length M/2 
among the Q”i2 branches which gives the MMSE. The 
next branch of length M/2 is the one with MMSE that 
enables the total branch of length M (together with 

the previous branch of length M/2) to satisfy the con- 
straint. 

4. DECODER STRUCTURE 

A Viterbi Decoder that implements (2) would not make 
use of the constraint imposed in the encoder. There- 
fore, the proposed decoder structure is a List Viterbi 
Decoder (LVD)[lO]. A LVD produces a rank ordered 
list of the L globally best candidates after a trellis 
search. Here, we use a parallel LVD that simultane- 
ously produces the L best candidates. This algorithm 
requires maintaining a cost array of NL accumulated 

costs and a state array of NLxM which stores the path 
history. For each node at time t only the L branches 
with minimum costs (in a rank ordered fashion) sur- 
vive. 

Seshardi and Sundberg [lo] have shown that, the worst 
case asymptotic gain for the LVD with L outputs over 
the Viterbi Decoder is 

lOlog,, = lOlogm&~ (4) 

The gains with L=4, 8, 16, are 2.04 dB, 2.50 dB, 2.75 
dB respectively. For large values of L, the gain ap- 

proaches 3 dB. However, they note that the gain pre- 
sented in (4) is somewhat optimistic and the actual 
gain is often smaller. They have shown this result for 
decoding for the additive white Gaussian noise chan- 
nel. 
The overall propsed system consists of the constrained 

tree encoder acting as a joint source/channel coder at 
the transmitter, and a LVD acting as a joint source/channel 
decoder followed by a DPCM decoder at the receiver. 

5. RESULTS 

Three-bit DPCM, tree encoder, and constrained tree 
encoder are used as source encoders, in order to make 
a comparision of the proposed system with the existing 
systems. All have a one-tap predictor, and Lloyd-Max 
nonuniform quantizers. We used two different predictor 

coefficients given by 

R(1) 
p1 = R(O) 

al = 1 - (1 - PV” 
Pl 

(6) 

where R(.) is the autocorrelation function of the source, 
pr is the MSE optimized predictor coefficient, and al 
is calculated using Chang and Donaldson’s worst case 
result. The search depth of the tree encoders is chosen 



to be 4 and the constraint length is 8. The channel was 
assumed to be BSC. 
When the source encoder was the DPCM system or 
tree encoder, the Viterbi Decoder structure was used. 

The implementation of the Viterbi Decoder we chose 
incorporated a fixed delay of 35 time units to allow a 
regular symbol release. A symbol was released by look- 
ing at the root of the path with minimum cost. When 
the source encoder was the constrained tree encoder, 

LVD structure was used. The LVD we implemented re- 
leases a block of constraint length instead of releasing 
a single symbol. 16 best paths are produced for each 
node and after 64 time units, the decoder chooses the 
paths whose first eight elements satisfy our constraint. 
All other paths are pruned. The first eight elements 
of the path with minimum cost -among the remaining 
paths- is released. The simulation results for both of 
the decoder types show that the system performance 
was insensitive to increases in either the stack depth or 
the number of best candidates to be found. 

The test image used for simulation was the USC GIRL 
image, for which ar=0.778625 and pi=O.96949. To ob- 
tain the set of source coder output transition probabil- 

ities, which both the decoders need to obtain the path 
metric defined in (2), we used the SENSIN image or 

the channel output as the training data. These two 
images are different enough to give us an idea about 
the robustness of the proposed system. The perfor- 
mance measure used to compare various systems is the 
signal-to-noise ratio (SNR) which is defined as 

CG12 
SNR = 1obl C(xn _ in)2 (7) 

where I, is the input to the source encoder and i, is 
the output of the source decoder. 

P Pred. Coef=0.96949 Pred. Coef=0.778625 

DPCM 1 tree 1 c.tree DPCM 1 tree 1 c.tree 

.l 2.63 1 2.76 1 2.90 8.47 1 8.57 1 8.49 

.Ol 10.60 10.85 10.38 17.67 17.83 17.31 

.OOl 19.35 19.54 18.99 21.43 21.94 21.13 

0 27.66 28.14 25.31 25.06 25.74 23.25 

Table 1: SNR values at the channel output before cor- 
rection 

As seen in Table 1, the tree encoder outperforms 

the DPCM about 0.5 dB and by using constrained tree 

encoder, we lose about 2.5 dB for the error free case, 

for both of the predictor coefficients. The loss is due to 
limiting the number of available sequences to be trans- 
mitted. The encoders that use Chang and Donaldson’s 
worst case result to calculate the predictor coefficent 

T. D. 1 Pred. Coef=0.96949 1 Pred. Coef=0.778625 1 

P=.l P=.Ol P=.OOl P=.l P=.Ol P=.OOl 

Sns. 5.55 12.25 18.88 10.57 17.52 21.64 

Chn. 2.68 14.14 22.83 8.91 19.03 22.62 

Table 4: SNR values at the source deocder output of 

the proposed system 

Table 2: SNR values at the source decoder output, 
where the JSCD is a Viterbi Decoder using the SENSII% 
image as the training data 

1 P 1 Pred. Coef=0.96949 1 Pred. Coef=0.778625 1 

Table 3: SNR values at the source decoder output, 
where the JSCD is a Viterbi Decoder using the channel 

output as the training data 

(namely a predictor coefficient of 0.778625), which we 
will call the reoptimized systems, are less vulnerable 
to channel noise. Reoptimized systems outperform the 
classical systems (encoders in which the predictor has 
been obtained using only the source statistics, namely 
a prediction coefficent of 0.96949) by an amount of 6 
dB for a BERof 0.1, 0.01, and 2 dB for a BER of 0.001, 
when no error correction is performed. Due to Table 

1, and 2 the improvements for the reoptimized systems 
are about 3 dB for a BER of 0.1, -0.5 dB for a BER 

of 0.01, and -1 dB for a BER of 0.001. The improve- 
ments for reoptimized systems, according to Table 1, 

and 3 are about 0 dB for a BER of 0.1, 0.7 dB for a 
BER of 0.01, and 0 dB for a BER of 0.001. According 

to Table 4, the corresponding improvements with the 

proposed system are 2 dB for a BER of 0.1,0.02 dB for 
a BER of 0.01, and 0.5 dB for a BER of 0.001, when 
the SENSIN image is used as the training data, and 

0.5 dB for a BER of 0.1, 1.7 dB for a BER of 0.01, and 
1.8 dB for a BER of 0.001, when the channel output 
is used as the training data. These results show that 



cj 
Table 5: CBER for the simulated systems 

one should use a training image,for high probability of 
errors, and the channel output for low probability of 
errors to obtain the transition probabilities. Note that 
the proposed system exhibits improvements even for 
low BER’s, while other systems fail to do so. The pro- 
posed system also outperforms all the other systems for 

low BER’s. 
When we used the classical systems at the encoder, 

the improvements are almost the same as, but the final 
SNR values are lower than the reoptimized systems for 
high BER’s. This is expected, because the reoptimized 
systems take into account the channel errors, when de- 
signing the predictor. In case of low BER’s however, 
the proposed system (when using the channel output 
as the training data) outperformed the other sytems by 
an amount of 3.5-4 dB. 
Also note that according to (6), having no improve- 
ments when using a Viterbi Decoder for a BER of 

0.001, is expected since the CBER’s shown in Table 
5 are greater than 0.001. However, the propsed system 
shows an improvement of 2-3 dB even for this BER, 
because it is doing more than a VD that implements 

(5), hence results in improvements even for the BER’s 
less than CBER. These results show that the proposed 
system using the channel output as the training data 
is a good solution for low BER’s. 

6. CONCLUSION 

We presented an approach for obtaining improvements 
when image transmission is performed using joint 

sorce/channel coding over channels with low BER’s. It 

incurs non-trivial operations at both the encoder and 
the decoder. The approach does not require any over- 
head for error protection and is reasonably robust since 
it suffices using the channel output as the training set. 
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